二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點(diǎn);當(dāng)Δ=0時,直線與拋物線相切,有一個切點(diǎn);當(dāng)Δ<0時,直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個交點(diǎn),此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對稱。x軸、y軸是雙曲線的對稱軸,原點(diǎn)是對稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點(diǎn)對稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點(diǎn)F_1上,片門位另一個焦點(diǎn)F_2上,由橢圓一個焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線的簡單幾何性質(zhì)
《拋物線的簡單幾何性質(zhì)》是人教A版選修2-1第二章第四節(jié)的內(nèi)容。本節(jié)課是在是在學(xué)習(xí)了橢圓、雙曲線的幾何性質(zhì)的基礎(chǔ)上,通過類比學(xué)習(xí)拋物線的簡單幾何性質(zhì)。拋物線是高中數(shù)學(xué)的重要內(nèi)容,也是高考的重點(diǎn)與熱點(diǎn)內(nèi)容。
坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動變化和對立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué).
課程目標(biāo) | 學(xué)科素養(yǎng) |
A.掌握拋物線的簡單幾何性質(zhì). B.歸納、對比四種方程所表示的拋物線的幾何性質(zhì)的異同. C.掌握直線與拋物線位置關(guān)系的判斷。
| 1.數(shù)學(xué)抽象:拋物線的幾何性質(zhì) 2.邏輯推理:運(yùn)用拋物線的方程推導(dǎo)其幾何性質(zhì) 3.數(shù)學(xué)運(yùn)算:運(yùn)用拋物線的方程推導(dǎo)其幾何性質(zhì) 4.直觀想象:拋物線幾何性質(zhì)的簡單應(yīng)用 |
重點(diǎn):拋物線的簡單幾何性質(zhì)及其應(yīng)用
難點(diǎn):直線與拋物線位置關(guān)系的判斷
多媒體
教學(xué)過程 | 教學(xué)設(shè)計(jì)意圖 核心素養(yǎng)目標(biāo) | |||||||||||||||||||||||||||||||||||||||||||||
一、問題導(dǎo)學(xué) 類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法, y2 = 2px (p>0) 你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)? 1. 范圍 拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線. 2. 對稱性 觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸.
3. 頂點(diǎn) 拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) . 4. 離心率 拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.
探究 如果拋物線的標(biāo)準(zhǔn)方程是 那么拋物線的范圍(開口方向)、對稱性、頂點(diǎn)、離心率中,哪些與①所表示的拋物線是相同的?哪些是有區(qū)別的? 拋物線四種形式的標(biāo)準(zhǔn)方程及其性質(zhì)
1.對以上四種位置不同的拋物線和它們的標(biāo)準(zhǔn)方程進(jìn)行對比、分析, 其共同點(diǎn):(1)頂點(diǎn)都為原點(diǎn); (2)對稱軸為坐標(biāo)軸; (3)準(zhǔn)線與對稱軸垂直,垂足與焦點(diǎn)分別關(guān)于原點(diǎn)對稱,它們與原點(diǎn)的距離都等于一次項(xiàng)系數(shù)的絕對值的; (4)焦點(diǎn)到準(zhǔn)線的距離均為p. 其不同點(diǎn):(1)對稱軸為x軸時,方程的右端為2px,左端為y2;對稱軸為y軸時,方程的右端為2py,左端為x2;(2)開口方向與x軸(或y軸)的正半軸相同,焦點(diǎn)在x軸(或y軸)的正半軸上,方程的右端取正號;開口方向與x軸(或y軸)的負(fù)半軸相同,焦點(diǎn)在x軸(或y軸)的負(fù)半軸上,方程的右端取負(fù)號. 2.只有焦點(diǎn)在坐標(biāo)軸上,頂點(diǎn)是原點(diǎn)的拋物線的方程才是標(biāo)準(zhǔn)方程. 1. 判斷 (1)拋物線關(guān)于頂點(diǎn)對稱.( ) (2)拋物線只有一個焦點(diǎn),一條對稱軸,無對稱中心.( ) (3)拋物線的標(biāo)準(zhǔn)方程雖然各不相同,但是其離心率都相同.( ) 答案:(1) (2)√ (3)√ 2.思考:怎樣根據(jù)拋物線的標(biāo)準(zhǔn)方程判斷拋物線的對稱軸和開口方向? 解析:一次項(xiàng)的變量若為x(或y),則x軸(或y軸)是拋物線的對稱軸,一次項(xiàng)系數(shù)的符號決定開口方向.如果y是一次項(xiàng),負(fù)時向下,正時向上. 如果x是一次項(xiàng),負(fù)時向左,正時向右. 3. 以x軸為對稱軸的拋物線的通徑(過焦點(diǎn)且與對稱軸垂直的弦)長為8,若拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),則其方程為( ) A.y2=8x B.y2=-8x C.y2=8x或y2=-8x D.x2=8y或x2=-8y 解析:設(shè)拋物線方程為y2=2px(p>0)或y2=-2px(p>0),依題意得x=,代入y2=2px或y2=-2px得|y|=p,∴2|y|=2p=8,p=4.∴拋物線方程為y2=8x或y2=-8x. 答案:C 問題思考 (1)掌握拋物線的性質(zhì),重點(diǎn)應(yīng)抓住“兩點(diǎn)”“兩線”“一率”“一方向”,它們分別指的是什么? 提示:“兩點(diǎn)”是指拋物線的焦點(diǎn)和頂點(diǎn);“兩線”是指拋物線的準(zhǔn)線和對稱軸;“一率”是指離心率1;“一方向”是指拋物線的開口方向. (2)拋物線的性質(zhì)與橢圓和雙曲線性質(zhì)的主要區(qū)別有哪些? 提示:拋物線的離心率等于1,它只有一個焦點(diǎn)、一個頂點(diǎn)、一條對稱軸和一條準(zhǔn)線.它沒有中心,通常稱拋物線為無心圓錐曲線,而稱橢圓和雙曲線為有心圓錐曲線. 二、典例解析 例3. 已知軸,頂點(diǎn)是坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn)M 求它的標(biāo)準(zhǔn)方程。 解:因?yàn)檩S,它的頂點(diǎn)在原點(diǎn),并且經(jīng)過點(diǎn)M,所以可設(shè)它的標(biāo)準(zhǔn)方程為 因?yàn)辄c(diǎn)M 解得=因此,所求拋物線的標(biāo)準(zhǔn)方程是 頂點(diǎn)在原點(diǎn),對稱軸是坐標(biāo)軸,并且經(jīng)過點(diǎn)M的拋物線有幾條?求出這些拋物線的標(biāo)準(zhǔn)方程。 跟蹤訓(xùn)練1 .設(shè)拋物線y=mx2(m≠0)的準(zhǔn)線與直線y=1的距離為3,求拋物線的標(biāo)準(zhǔn)方程. 錯解:由y=mx2(m≠0)可知其準(zhǔn)線方程為y=-. 由題意知-=-2,解得m=8, 故所求拋物線的標(biāo)準(zhǔn)方程為y=8x2. 錯因分析本題在解答過程中容易出現(xiàn)兩個錯誤:一是不能正確理解拋物線標(biāo)準(zhǔn)方程的形式,錯誤地將所給方程看成是拋物線的標(biāo)準(zhǔn)方程,得到準(zhǔn)線方程為y=- ; 二是得到準(zhǔn)線方程后,只分析其中的一種情況,而忽略了另一種情況,只得到了一個解. 正解:y=mx2(m≠0)可化為x2=y,其準(zhǔn)線方程為y=-.由題意知-=-2或-=4, 解得m=或m=-, 故所求拋物線的標(biāo)準(zhǔn)方程為x2=8y或x2=-16y.
例4 .斜率為 1 的直線經(jīng)過拋物線 y2 = 4x 的焦點(diǎn),與拋物線相交于兩點(diǎn)A、B,求焦點(diǎn)弦長AB的長. 解:方法一:由拋物線的標(biāo)準(zhǔn)方程可知,拋物線焦點(diǎn)的坐標(biāo)為F (1,0), 所以直線AB的方程為,即, ① 將方程①代入拋物線方程,化簡得, 解這個方程,得,, 將,代入方程①中, ,,即A(,),B(,), ∴. 解:方法二:由拋物線的定義可知,|AF|=|AD|=x1+1,|BF|=|BC|= x2+1, 于是|AB|=|AF|+|BF|= x1+x2+2. 在方法一中得到方程x2-6x+1=0后, 根據(jù)根與系數(shù)的關(guān)系可以直接得到x1+x2=6, 于是立即可以求出|AB|=6+2=8. 方法三:拋物線y2=4x中2p=4,直線的 傾斜角為所以焦點(diǎn)弦長. 直線和拋物線的位置關(guān)系有三種:相交、相切、相離 將直線方程和拋物線方程聯(lián)立,消元轉(zhuǎn)化為關(guān)于 x(或 y 的) 方程組:Ax2 + Bx + C = 0(或Ay2 + By + C = 0),其中A,B,C 為常數(shù). 若A = 0,則直線和拋物線相交(直線與拋物線的對稱軸平行),有一個交點(diǎn); 若A ≠ 0,計(jì)算判別式 Δ=B2 -4AC : 若 Δ>0,則直線和拋物線相交(有兩個交點(diǎn)); 若 Δ = 0,則直線和拋物線相切(有一個交點(diǎn)); 若 Δ<0,則直線和拋物線相離(無交點(diǎn)). 跟蹤訓(xùn)練2 (1)過定點(diǎn)P(0,1)作與拋物線y2=2x只有一個公共點(diǎn)的直線有幾條? (2)若直線l:y=(a+1)x-1與曲線C:y2=ax(a≠0)恰好有一個公共點(diǎn),試求實(shí)數(shù)a的取值集合. [思路探究] (1)分斜率存在、不存在兩種情況,存在時將直線方程代入拋物線方程,轉(zhuǎn)化為Δ=0求解;不存在時顯然滿足題意. (2)→ →分類討論方程有一解時a的取值 [解] (1)當(dāng)直線的斜率不存在時,直線x=0,符合題意. 當(dāng)直線的斜率存在時,設(shè)過點(diǎn)P的直線方程為y=kx+1,當(dāng)k=0時,直線l的方程為y=1,滿足直線與拋物線y2=2x僅有一個公共點(diǎn); 當(dāng)k≠0時,將直線方程y=kx+1代入y2=2x,消去y得k2x2+2(k-1)x+1=0.由Δ=0,得k=,直線方程為y=x+1.故滿足條件的直線有三條. (2)因?yàn)橹本€l與曲線C恰好有一個公共點(diǎn),所以方程組只有一組實(shí)數(shù)解,消去y,得[(a+1)x-1]2=ax,即(a+1)2x2-(3a+2)x+1=0 ①. (ⅰ)當(dāng)a+1=0,即a=-1時,方程①是關(guān)于x的一元一次方程,解得x=-1,這時,原方程組有唯一解 (ⅱ)當(dāng)a+1≠0,即a≠-1時,方程①是關(guān)于x的一元二次方程. 令Δ=(3a+2)2-4(a+1)2=a(5a+4)=0,解得a=0(舍去)或a=-. 所以原方程組有唯一解 綜上,實(shí)數(shù)a的取值集合是. |
通過,類比橢圓和雙曲線的幾何性質(zhì)的學(xué)習(xí)過程,學(xué)習(xí)拋物線的幾何性質(zhì)。發(fā)展學(xué)生數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、直觀想象的核心素養(yǎng)。
通過拋物線幾何性質(zhì)的討論,進(jìn)一步體會數(shù)形結(jié)合的思想方法。發(fā)展學(xué)生數(shù)學(xué)運(yùn)算,數(shù)學(xué)抽象和數(shù)學(xué)建模的核心素養(yǎng)。
通過典型例題,熟練掌握根據(jù)幾何條件求拋物線的方法,提升學(xué)生數(shù)學(xué)建模,數(shù)形結(jié)合,及方程思想,發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素
通過典型例題,熟練掌握直線與拋物線的位置關(guān)系的方法,提升學(xué)生數(shù)學(xué)建模,數(shù)形結(jié)合,及方程思想,發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。
| |||||||||||||||||||||||||||||||||||||||||||||
三、達(dá)標(biāo)檢測 1.若拋物線y2=2x上有兩點(diǎn)A、B且AB垂直于x軸,若|AB|=2,則拋物線的焦點(diǎn)到直線AB的距離為( ) A. B. C. D. A [線段AB所在的直線方程為x=1,拋物線的焦點(diǎn)坐標(biāo)為,則焦點(diǎn)到直線AB的距離為1-=.] 2.在拋物線y2=16x上到頂點(diǎn)與到焦點(diǎn)距離相等的點(diǎn)的坐標(biāo)為( ) A.(4,2) B.(4,2) C.(2,4) D.(2,4) D [拋物線y2=16x的頂點(diǎn)O(0,0),焦點(diǎn)F(4,0),設(shè)P(x,y)符合題意,則有 ?? 所以符合題意的點(diǎn)為(2,4).] 3.已知AB是過拋物線2x2=y(tǒng)的焦點(diǎn)的弦,若|AB|=4,則AB的中點(diǎn)的縱坐標(biāo)是________. [設(shè)A(x1,y1),B(x2,y2),由拋物線2x2=y(tǒng),可得p=. ∵|AB|=y(tǒng)1+y2+p=4, ∴y1+y2=4-=,故AB的中點(diǎn)的縱坐標(biāo)是=.] 4. 已知拋物線y2=8x. (1)求出該拋物線的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線方程、對稱軸、變量x的范圍; (2)以坐標(biāo)原點(diǎn)O為頂點(diǎn),作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點(diǎn)F是△OAB的重心,求△OAB的周長. 解:(1)拋物線y2=8x的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線方程、對稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0. (2)如圖所示,由|OA|=|OB|可知AB⊥x軸,垂足為點(diǎn)M, 又焦點(diǎn)F是△OAB的重心,則|OF|=|OM|. 因?yàn)镕(2,0),所以|OM|=|OF|=3,所以M(3,0).故設(shè)A(3,m),代入y2=8x得m2=24, 所以m=2或m=-2,所以A(3,2),B(3,-2),所以|OA|=|OB|=,所以△OAB的周長為2+4. 5.已知點(diǎn)P(1,m)是拋物線C:y2=2px上的點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且|PF|=2,直線l:y=k(x-1)與拋物線C相交于不同的兩點(diǎn)A,B. (1)求拋物線C的方程; (2)若|AB|=8,求k的值. [解] (1)拋物線C:y2=2px的準(zhǔn)線為x=-, 由|PF|=2得:1+=2,得p=2.所以拋物線的方程為y2=4x. (2)設(shè)A(x1,y1),B(x2,y2),由 可得k2x2-(2k2+4)x+k2=0,Δ=16k2+16>0, ∴x1+x2=. ∵直線l經(jīng)過拋物線C的焦點(diǎn)F, ∴|AB|=x1+x2+p=+2=8, 解得k=1,所以k的值為1或-1. |
通過練習(xí)鞏固本節(jié)所學(xué)知識,通過學(xué)生解決問題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。
|
轉(zhuǎn)載請注明出處!本文地址:
http://ibju.cn/worddetails_5886143.html1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠實(shí)可愛;你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。
一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺運(yùn)用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對。加強(qiáng)職工群眾熱點(diǎn)問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。
二是深耕意識形態(tài)。加強(qiáng)意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點(diǎn),科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動,以實(shí)際行動推動黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實(shí)際措施,推動問題的實(shí)際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。
今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級,實(shí)現(xiàn)2000噸級舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開工在即,但項(xiàng)目開工前還有許多實(shí)際問題亟需解決。結(jié)合“到一線去”專項(xiàng)行動,我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價值。
三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標(biāo)任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢,進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠實(shí)可愛;你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。
一是XX單位下轄的部分黨支部和黨員干部個人的自我檢視不夠,特別是抓整改的措施落實(shí)得還不夠全面,還有一些問題沒有得到完全徹底解決。二是調(diào)查研究的不足。部分黨員聯(lián)系實(shí)際、聯(lián)系自身工作作風(fēng)不夠緊密,少數(shù)黨員干部政治敏銳性和鑒別力也有待進(jìn)一步提高。三、下一步工作打算在下一步工作中,我們將突出問題導(dǎo)向,采取積極有效措施徹底解決以上存在的問題,確保主題教育實(shí)現(xiàn)預(yù)期目標(biāo)。一是進(jìn)一步提升抓好主題教育的主動性和自覺性。教育引導(dǎo)xx單位全體黨員干部要深入貫徹xxx總書記的要求,持之以恒,發(fā)揚(yáng)“釘釘子”精神,一錘一錘接著敲,直到把釘子釘實(shí)釘牢。二是主動運(yùn)用主題教育成果推進(jìn)中心工作。積極引導(dǎo)廣大黨員堅(jiān)定地與上級黨委保持高度一致,把統(tǒng)一思想、提高認(rèn)識擺在特別重要的位置,深入學(xué)習(xí)、準(zhǔn)確理解群眾路線理論觀點(diǎn),圍繞省委高質(zhì)量發(fā)展目標(biāo)任務(wù),扎扎實(shí)實(shí)推進(jìn)中心工作。
二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國供銷集團(tuán)冷鏈物流項(xiàng)目跟蹤對接,協(xié)調(diào)解決項(xiàng)目落戶過程中存在的困難和問題,力爭早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時限及“每月通報(bào)、季度排名、半年分析、年終獎勵”相關(guān)要求,通過“比實(shí)績、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。
(五)實(shí)施融合促進(jìn)工程,切實(shí)發(fā)揮黨建引領(lǐng)高質(zhì)量發(fā)展作用。堅(jiān)持推動黨建與業(yè)務(wù)工作深度融合,堅(jiān)持黨建和業(yè)務(wù)工作一起謀劃、一起部署、一起落實(shí)、一起檢查。一是在服務(wù)大局中全力作為。按照市局《關(guān)于加強(qiáng)黨建引領(lǐng)“警地融合”推動基層治理體系和治理能力現(xiàn)代化的實(shí)施意見》,組織開展“我為群眾辦實(shí)事”“雙報(bào)到”實(shí)踐活動300余次。邀請市人大代表、政協(xié)委員、黨風(fēng)政風(fēng)警風(fēng)監(jiān)督員參加市局“向黨和人民報(bào)告”警營開放日活動,在黨建引領(lǐng)、安保維穩(wěn)、執(zhí)法辦案、保護(hù)群眾中涌現(xiàn)出來的忠誠擔(dān)當(dāng)、清正廉潔、無私奉獻(xiàn)的,選樹28名優(yōu)秀共產(chǎn)黨員、15名優(yōu)秀黨務(wù)工作者、8個先進(jìn)基層黨組織,充分發(fā)揮正向激勵作用,營造學(xué)習(xí)典型、爭做典型、弘揚(yáng)典型精神的濃厚氛圍。二是強(qiáng)化暖警惠警措施。
一是及時傳達(dá)學(xué)習(xí)xxx總書記重要指示精神。堅(jiān)持把學(xué)習(xí)貫徹xxx總書記關(guān)于加強(qiáng)領(lǐng)導(dǎo)班子建設(shè)、培養(yǎng)選拔優(yōu)秀年輕干部等重要指示精神作為重大政治任務(wù),局黨組會及時傳達(dá)學(xué)習(xí),并就貫徹落實(shí)指示精神提出具體措施,扎實(shí)抓好我局領(lǐng)導(dǎo)班子和干部隊(duì)伍建設(shè),以實(shí)際工作業(yè)績彰顯學(xué)習(xí)貫徹成效。二是加強(qiáng)領(lǐng)導(dǎo)班子分析研判。堅(jiān)持把考察了解班子和干部的功夫下在平時,定期開展領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部分析研判工作,重點(diǎn)了解班子運(yùn)行、整體結(jié)構(gòu)、優(yōu)化方向等情況,聽取干部群眾對班子和干部的評價,掌握班子成員個人思想動態(tài)和意愿訴求。同時,將研判中發(fā)現(xiàn)的政治堅(jiān)定、敢于擔(dān)當(dāng)、群眾認(rèn)可的優(yōu)秀年輕干部納入選人用人視野,切實(shí)做好干部儲備。三是全面收集掌握干部表現(xiàn)。嚴(yán)格落實(shí)干部監(jiān)督工作聯(lián)席會議制度,定期與紀(jì)檢、公檢法、信訪、審計(jì)等部門溝通信息,注重掌握干部負(fù)面信息,并進(jìn)行分析研判。
2024年是XX油田剛性推進(jìn)“三年一盤棋”整體部署落地的基礎(chǔ)年,也是走穩(wěn)“三步走”戰(zhàn)略實(shí)現(xiàn)轉(zhuǎn)型發(fā)展的重要一年,更是工程技術(shù)服務(wù)公司堅(jiān)持低成本戰(zhàn)略、發(fā)展特色工程技術(shù)的關(guān)鍵一年。站在新起點(diǎn),邁向新征程,公司既面對難得發(fā)展機(jī)遇,也面臨不少風(fēng)險(xiǎn)挑戰(zhàn)。開展“轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動,就是教育引導(dǎo)廣大干部員工全面學(xué)習(xí)貫徹xxx新時代中國特色社會主義思想和黨的XX大精神,全面貫徹落實(shí)中油集團(tuán)公司2024年工作會議和油田公司、公司“兩會”各項(xiàng)工作部署,始終不忘“我為祖國獻(xiàn)石油”的初心,深刻認(rèn)識油氣產(chǎn)量是“端牢能源飯碗”的責(zé)任擔(dān)當(dāng),著力更新發(fā)展理念、變革發(fā)展模式,抓住當(dāng)前內(nèi)外部利好機(jī)遇,堅(jiān)定“服務(wù)油田開發(fā)”主導(dǎo)思想不動搖,圍繞“12345”發(fā)展戰(zhàn)略,推動服務(wù)水平再提檔、再升級,加快建設(shè)創(chuàng)新型可持續(xù)發(fā)展的工程技術(shù)服務(wù)公司。