
2、提出問題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少張呢?3、揭示課題:分餅二、動手操作,探究新知:活動操作一:3張餅平均分給4個(gè)人。1、要求學(xué)生用準(zhǔn)備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進(jìn)行指導(dǎo)。2、各小組匯報(bào)分法及分得的結(jié)果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請學(xué)生上臺演示分的整個(gè)過程。第二種分法:把3張餅疊起來,平均分成4份,每人分得3張餅的,也是張餅,請學(xué)生上臺演示分的整個(gè)過程。3、演示學(xué)生兩種分法的圖片:4、請觀察,這個(gè)分?jǐn)?shù)有什么特點(diǎn),分子比分母小,你還能舉幾個(gè)這樣的例子嗎?像這樣的分?jǐn)?shù)叫作真分?jǐn)?shù),真分?jǐn)?shù)小于1。

我說課的內(nèi)容是北師大版四年級上冊第68-70頁的《秋游》,我將從教材、教法、學(xué)法、教學(xué)過程四個(gè)方面對本節(jié)課進(jìn)行說課:一.說教材本節(jié)課是在學(xué)生掌握四舍五入法試商的基礎(chǔ)上進(jìn)行教學(xué)的。此前,學(xué)生學(xué)習(xí)的除法都是一次試商成功不需要調(diào)商的。本課由秋游搭車的事件引出計(jì)算:每個(gè)年級各需幾輛車?先讓學(xué)生運(yùn)用已有知識進(jìn)行計(jì)算,發(fā)現(xiàn)不是所有的除法計(jì)算一次試商就能成功,需要對所估得的商進(jìn)行調(diào)試,從而掌握除數(shù)是兩位數(shù)的除法筆算。結(jié)合教材的特點(diǎn)和學(xué)生的實(shí)際情況,我確定了如下教學(xué)目標(biāo):1、知識與技能:讓學(xué)生在具體情境中,經(jīng)歷四舍五入法試商后進(jìn)行調(diào)商的探索過程,理解試商后調(diào)商的原因。并能正確地進(jìn)行除數(shù)是兩位數(shù)(商是一位數(shù))的筆算。2、過程與方法:讓學(xué)生在探索計(jì)算方法和解決問題的過程中,感受數(shù)學(xué)與生活的聯(lián)系,提高學(xué)生的估算能力。

尊敬的領(lǐng)導(dǎo),評委老師:大家好,今天我說課的題目是北師大版小學(xué)數(shù)學(xué)五年級上冊第一單元第五節(jié)《除得盡嗎》。我將會以說教材、說學(xué)生、說教法、說教學(xué)過程、說教學(xué)效果評測、說反思等六各方面進(jìn)行我的說課。一:說教材《除得盡嗎》本節(jié)內(nèi)容是本單元的第五節(jié),是在學(xué)生已經(jīng)學(xué)習(xí)了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎(chǔ)之上進(jìn)行設(shè)置的。本節(jié)內(nèi)容的主要知識點(diǎn)就是讓學(xué)生認(rèn)識循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說學(xué)生對于五年級學(xué)生而言,已經(jīng)在四年級學(xué)習(xí)了“四舍五入”法,所以在本節(jié)新授教學(xué)中已經(jīng)有了一定的基礎(chǔ)。對于教師的教和學(xué)生的學(xué)都有了一定的促進(jìn)作用。

課程標(biāo)準(zhǔn)中明確指出:“小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容絕大多數(shù)可以聯(lián)系學(xué)生的生活實(shí)際,找準(zhǔn)每一節(jié)教材內(nèi)容與學(xué)生生活實(shí)際的“切入點(diǎn)”可讓學(xué)生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學(xué)教學(xué)活動中,教師應(yīng)向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能?!币獙⑦@個(gè)理念落實(shí)在課堂教學(xué)中,就要求教師能根據(jù)教學(xué)的具體內(nèi)容,選擇恰當(dāng)?shù)膶W(xué)習(xí)方式,并巧妙創(chuàng)設(shè)學(xué)生主動探索的機(jī)會,變“接受學(xué)習(xí)”為“創(chuàng)造學(xué)習(xí)”,讓學(xué)生在觀察、操作、討論、交流、歸納、整理、概括的過程中學(xué)習(xí)新知,充分以學(xué)生為主體,逐步培養(yǎng)學(xué)生的創(chuàng)新意識,形成初步的探索和解決問題的能力。根據(jù)以上思想,本節(jié)課的設(shè)計(jì)我主要從尊重學(xué)生已有的知識經(jīng)驗(yàn);在觀察與操作中去親身體驗(yàn)知識的形成過程,掌握約分的方法。

四、說教法、學(xué)法我在教學(xué)中主要采用的教學(xué)方法是先學(xué)后教中的“兩學(xué)兩教”。輔之以多媒體教學(xué)手段(主要通過微課視頻的觀看學(xué)習(xí))。本課學(xué)生的學(xué)習(xí)方法主要有:自主發(fā)現(xiàn)法、合作交流法、自學(xué)嘗試法等。1.學(xué)生在自主探究解答例題,求兩種品牌罐頭的合格率時(shí),主要采用自學(xué)嘗試法,根據(jù)知識的遷移,學(xué)生能夠正確求出產(chǎn)品合格率。2.在總結(jié)小數(shù)、分?jǐn)?shù)化成百分?jǐn)?shù)的方法時(shí),學(xué)生主要采用自主發(fā)現(xiàn),合作交流的方法。首先讓學(xué)生觀察例題板書,想一想怎樣把小數(shù)、分?jǐn)?shù)化成百分?jǐn)?shù),采用了“兵教兵”的方法,達(dá)到了人人參與的目的。當(dāng)然,由于學(xué)生所處的文化環(huán)境,家庭背景和自身思維方式的不同,不同的學(xué)生所采用的方法也不盡相同,作為教師要尊重學(xué)生的選擇,允許學(xué)生用自己喜歡的方式學(xué)習(xí)數(shù)學(xué)。五、說教學(xué)過程

2、幼兒的動手、分辨能力,發(fā)展幼兒思維的靈活性?;顒訙?zhǔn)備:幾何圖形掛件一人一個(gè),數(shù)字卡片,演示教具,魔術(shù)卡每人一張活動過程:一、帶幼兒進(jìn)知識宮,激發(fā)幼兒的興趣。師:今天老師要帶小朋友到知識宮去玩。在知識宮,老師要給小朋友好多禮物,但這些禮物一定要小朋友動腦筋才能夠得到。第一份禮物需根據(jù)自己掛著的圖形和圖形上的數(shù)字找座位,找到了,這個(gè)圖形就作為第一份禮物送給你們。

2、運(yùn)用圖形連接創(chuàng)造簡單的圖像,初步體會圖形組合的意義。準(zhǔn)備1、形紙(供師生共同作畫的紙較幼兒畫紙大一倍)2、勾線筆、蠟筆(每人一、二支),方形打印紙。過程一、一起畫圖形。1、一起畫大園和小園——始末線條碰一碰封口。2、一起畫大方和小方——始末封口畫方3、圓形拉一拉,變長了,名字叫橢圓——畫一畫大小不同的橢圓,嘗試和園或方碰一碰連起來。4、方形拉一拉,變長了,名字叫長方——畫一畫和園、方連起來碰一碰的大小不同長方。二、圖形朋友碰碰碰1、找一找圖形朋友碰一碰以后像什么。(例如:人、動物、植物、交通工具等。)2、確定某個(gè)物體,添加圖形碰一碰,表現(xiàn)局部特征。3、在輪廓線內(nèi)涂色。碰出一個(gè)好朋友。

2、通過動手操作,發(fā)展幼兒空間想象能力和創(chuàng)造能力。3、培養(yǎng)幼兒對數(shù)學(xué)活動的興趣?;顒訙?zhǔn)備:1、知識按的準(zhǔn)備:幼兒已經(jīng)認(rèn)識幾中圖形。2、物質(zhì)資料準(zhǔn)備:奇妙箱,幼兒操作用的六種幾何圖形若干;各種圖形卡片人手一份?;顒恿鞒炭傆^:奇妙箱里找圖形說特征——拼畫——數(shù)數(shù)、分類——延伸:讓幼兒自己尋找其他圖形活動過程:(一)游戲:“奇妙箱”里找圖形娃娃師:“今天,老師帶來了一只奇妙的箱子。”(出示奇妙箱),“你們想不想知道里面藏了什么秘密???”1、老師念兒歌:奇妙口袋東西多,讓我先來摸一摸,摸出來看是什么?拿出長方形,問:“這是什么啊?為什么說她是長方形的???”問:“日常生活中,我們見過哪些東西是長方形的?”(引導(dǎo)幼兒討論)2、再念兒歌:奇妙口袋東西多,請某某小朋友來摸一摸。當(dāng)幼兒摸出圖形后,要求說出圖形名稱和特征,并講出生活中還有哪些這樣的物品?……游戲反復(fù)進(jìn)行。

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺階。下列圖中的兩個(gè)臺階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺階抽象地看成兩個(gè)三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

方法總結(jié):判斷軸對稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對稱.解:(4)(5)(6).方法總結(jié):動手操作或結(jié)合軸對稱的概念展開想象,在腦海中嘗試完成一個(gè)動態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對稱圖形的定義2.對稱軸3.兩個(gè)圖形成軸對稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識,獨(dú)立獲取知識和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)

在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運(yùn)用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;

例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學(xué)回家后,問爸爸媽媽小牛隊(duì)與太陽隊(duì)籃球比賽的結(jié)果.爸爸說:“本場比賽太陽隊(duì)的納什比小牛隊(duì)的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊(duì)贏;否則太陽隊(duì)贏.”請你幫小明分析一下.究竟是哪個(gè)隊(duì)贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計(jì)劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報(bào)價(jià)均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費(fèi),學(xué)生都按七折收費(fèi);乙旅行社的優(yōu)惠條件是家長、學(xué)生都按八折收費(fèi).假設(shè)這兩位家長帶領(lǐng)x名學(xué)生去旅游,他們應(yīng)該選擇哪家旅行社?

1.知識目標(biāo):在回顧與思考中建立本章的知識框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標(biāo):進(jìn)一步體會證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進(jìn)一步掌握綜合法的證明方法,結(jié)合實(shí)例體會反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語言表達(dá)論證過程的能力.3.情感價(jià)值觀要求通過積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣.重點(diǎn):通過例題的講解和課堂練習(xí)對所學(xué)知識進(jìn)行復(fù)習(xí)鞏固難點(diǎn):本章知識的綜合性應(yīng)用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個(gè)內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。

A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關(guān)系:現(xiàn)在已存有55元,計(jì)劃從現(xiàn)在起以后每個(gè)月節(jié)省20元.若此學(xué)生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關(guān)系時(shí),要找準(zhǔn)題中表示不等關(guān)系的兩個(gè)量,并用代數(shù)式表示;正確理解題中的關(guān)鍵詞,如負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設(shè)計(jì)1.不等式的概念2.列不等式(1)找準(zhǔn)題目中不等關(guān)系的兩個(gè)量,并且用代數(shù)式表示;(2)正確理解題目中的關(guān)鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關(guān)系的兩個(gè)量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實(shí)際問題引入不等式,并用不等式表示數(shù)量關(guān)系.要注意常用的關(guān)鍵詞的含義:負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關(guān)鍵詞中如果含有“不”“非”等文字,一般應(yīng)包括“=”,這也是學(xué)生容易出錯的地方.

解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請你判斷到C城后還能接收到信號嗎?請說明理由.

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.

[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個(gè)問題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

解1:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x°則 因?yàn)閚為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因?yàn)?,所以 解2:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個(gè)n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個(gè)頂點(diǎn)可以畫7條對角線,則這個(gè)n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個(gè)多邊形的各個(gè)內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計(jì)一個(gè)內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實(shí)現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點(diǎn)間距離,在O點(diǎn)打樁,取OA的中點(diǎn) C,OB的中點(diǎn)D,測得CD=30米,則AB=______米.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。