
明確:提出“生與義不可得兼,舍生而取義者也”的論點后,首先從正面指出人之所以能“舍生取義”,是因為人皆有“欲生不為茍得,惡死有所不辟”的思想。然后再從反面說明,如果人只是欲生惡死,那么什么事都可以做得出來;可是事實上,“義”超過了“生”,所以人能夠不貪生,不避死。這種羞惡之心,人人皆有,賢者更能保持而不喪失。接著舉例說明,以乞人不受不義之食為例,從正面論證“舍生取義”是人之共性。以萬鐘雖好也不能受為例,從反面強調(diào)了舍義取利是喪失本心。隨后用一組排比句,對不辯禮義而貪求富貴的行為加以批判,并以“此之謂失其本心”收束全文,照應(yīng)開頭。3.列舉本文主要的論證方法,并說明其作用。明確:(1)比喻論證。用比喻論證引出論點。以生活常理為喻引出生與義無法兼顧的情況下應(yīng)該舍生而取義的結(jié)論(主旨)。

4.《不求甚解》一文分析了陶淵明怎樣的讀書態(tài)度,請指出“不求甚解”的兩層含義。明確:態(tài)度:養(yǎng)成“好讀書”的習慣;讀書要訣在于“會意”。含義:第一,虛心,書不一定都能讀懂;第二,讀書方法:不固執(zhí)一點,而要了解大意。5.《不求甚解》一文是駁論文還是立論文?又是如何駁或者立的?談一談你的理解。明確:駁論文。駁的是“論點”,先全面闡述“不求甚解”的含義,進而提倡虛心的“不求甚解”的讀書態(tài)度,從而表明自己的觀點;又從“會意”角度,列舉古人讀書的例子,并闡明自己的正確論點:讀書在會意,不要死摳字眼,為一個局部而放棄整體;最后又強調(diào)了“書必須反復(fù)讀”的主張。這樣通過樹立自己正確的觀點從而駁倒敵論。

4.《不求甚解》一文分析了陶淵明怎樣的讀書態(tài)度,請指出“不求甚解”的兩層含義。明確:態(tài)度:養(yǎng)成“好讀書”的習慣;讀書要訣在于“會意”。含義:第一,虛心,書不一定都能讀懂;第二,讀書方法:不固執(zhí)一點,而要了解大意。5.《不求甚解》一文是駁論文還是立論文?又是如何駁或者立的?談一談你的理解。明確:駁論文。駁的是“論點”,先全面闡述“不求甚解”的含義,進而提倡虛心的“不求甚解”的讀書態(tài)度,從而表明自己的觀點;又從“會意”角度,列舉古人讀書的例子,并闡明自己的正確論點:讀書在會意,不要死摳字眼,為一個局部而放棄整體;最后又強調(diào)了“書必須反復(fù)讀”的主張。這樣通過樹立自己正確的觀點從而駁倒敵論。

目標導(dǎo)學四:詳細解讀,體會“論戰(zhàn)”智慧1.閱讀第一段,說說第一段寫了什么內(nèi)容,可以分為幾層。明確:第一段寫魯國戰(zhàn)前的準備,可分為兩層:第一層(從開始到“乃入見”)寫曹劌跟鄉(xiāng)人的對話,說明曹劌“請見”的原因;第二層(從“問”到段末)寫曹劌跟魯莊公的對話,說明政治上取信于民是作戰(zhàn)的先決條件。2.曹劌的身份是怎樣的?為什么他要說“肉食者鄙,未能遠謀”呢?明確:從“其鄉(xiāng)人曰”句中我們能推知曹劌的身份為普通老百姓,沒有官位,屬愛國君子,但他“位卑未敢忘國憂”。一句“肉食者鄙”,表明他已經(jīng)觀察到了君主身邊未有長策的弊端;而“未能遠謀”不僅是對自己深謀遠慮的充分肯定,而“遠謀”二字,也正是整個論戰(zhàn)的核心。3.“何以戰(zhàn)”是個賓語前置的句子,這句話引出了下文分析戰(zhàn)爭的條件,突出了曹劌重視戰(zhàn)前的政治準備。魯莊公認為要做哪幾方面的準備呢?

明確:(1)作者在前三段簡要交代了故事發(fā)生的背景環(huán)境——咸亨酒店。咸亨酒店是一個人群集中之地,反映著形形色色的人,但重要的是長衫和短衣的區(qū)別,昭示著這是一個階級分層的封建社會。而“掌柜是一副兇臉孔,主顧也沒有好聲氣”也凸顯出這個社會的薄涼。(2)“笑”是貫穿文中始末的一個關(guān)鍵詞,首先從“只有孔乙己到店,才可以笑幾聲”的基調(diào)開始,孔乙己便已然注定是眾人的笑料;果然,辯別盜竊,“引得眾人都哄笑起來”;質(zhì)疑他是讀書人,“眾人也都哄笑起來”;給孩子們吃茴香豆,“孩子都在笑聲里走散了”;他最后一次出現(xiàn),也是“在旁人的說笑聲中,坐著用這手慢慢走去了”。然而,這個“笑”字在文中只是“輕松活潑”的假象,它是森然的,沉重的?!靶Α崩锩姹憩F(xiàn)的是人與人之間的冷漠,是世態(tài)人情的薄涼。而也是從這“笑”中,我們感受到了作者寫在其中的怒,對社會于苦人的薄涼的控訴。

5.請你根據(jù)前面的探究,總結(jié)本文的論證思路。明確:作者首先通過論述作者、讀者以及文字之間的聯(lián)系來明確讀者欣賞文藝作品的本質(zhì),即“接觸作者的所見所感”,然后以賞析王維詩句為例,從正反兩個角度論述了驅(qū)遣想象力的重要作用。目標導(dǎo)學三:賞析語言,領(lǐng)悟內(nèi)涵文中有許多句子,都有十分深刻的文藝觀,它們或有十分深刻的內(nèi)蘊,或有寫作值得借鑒的實用價值,請閱讀下面幾句,談?wù)勀銓λ鼈兊睦斫狻?1)文藝的創(chuàng)作決不是隨便取許多文字來集合在一起。明確:任何一篇文藝作品,都是文字集合起來的,但這是一種有著內(nèi)在邏輯順序的結(jié)合,具有文本表現(xiàn)中的一般技法,既表現(xiàn)了內(nèi)容也傳遞著作者的思想感情。因此,這樣的文章絕不可能隨意拼湊,須由作者有意識、有目的、有邏輯地創(chuàng)造,而在完成時又符合自然的特點。(2)作者著手創(chuàng)作,必然對于人生先有所見,先有所感。

2.作者要說的是山水畫的意境,為什么要在第一部分大篇幅分析詩歌的意境。明確:按照作者的觀點,“孤帆遠影碧空盡,唯見長江天際流”兩句,完全描寫自然的景色,然而就在這兩句里,使人深深體會到詩人與朋友的深厚友情。描寫自然的景色與繪出景色無異,且作者提到“意境就是景與情的結(jié)合”,可見詩歌中的意境與山水畫的意境是相通的,并無二致。因此,作者在這里以已經(jīng)學習過的詩歌意境為例,也就能更好地詮釋山水畫的意境。3.“意境的產(chǎn)生,有賴于思想感情,而思想感情的產(chǎn)生,又與對客觀事物認識的深度有關(guān)。”作者是如何論述此觀點的?你認為這個觀點正確嗎,請結(jié)合你的個人經(jīng)歷做簡要說明。明確:作者以齊白石畫蝦為例來論證了他的觀點。這個觀點正確,如我們知道松樹的耐寒可以象征它的堅忍,而當我們在雪地里認真觀察,會發(fā)現(xiàn)只有松樹傲然長青,松針貫穿積雪依然向上,此刻,我們會真正感受到這種堅忍的品質(zhì)是那樣真實。

目標導(dǎo)學三:深入理解,體會“無言之美”1.請你結(jié)合作者的任意一則論據(jù),說說你對“無言之美”的感受。明確:正如作者探討文學作品時的數(shù)個例子,詩歌本是極其簡短的幾句話,但是其包含的意境卻是極其寬廣的。如“大漠孤煙直,長河落日圓”,言語只有短短的十個字,但是讀來卻似看見大漠的寬闊宏偉之景,悲涼之意,予人以悲涼雄壯的美感。然而,作者要描寫出這寬闊宏偉之景,悲涼之意,恐怕書萬言都難以說盡,這不是意味著作者將它們寓于無言之中了嗎?這就是古典文學中深蘊的無言之美。2.拓展延伸:品味下面一段話,說說你品味到“無言之美”的例子。拿美術(shù)來表現(xiàn)思想和情感,與其盡量流露,不如稍有含蓄;與其吐肚子把一切都說出來,不如留一大部分讓欣賞者自己去領(lǐng)會。因為在欣賞者的頭腦里所產(chǎn)生的印象和美感,有含蓄比較盡量流露的還要更加深刻。

一、導(dǎo)入新課唐太宗說:“以銅為鏡,可以正衣冠;以古為鏡,可以知興替;以人為鏡,可以明得失。”歷代君主若想成就一番霸業(yè),身邊沒有幾位敢進諫言的大臣是不成的;而勸諫能否奏效,一要看作君王的是否賢明,二要看諫者是否注意了進諫的藝術(shù),使“良藥”既“爽于口”,又“利于病”。戰(zhàn)國時齊威王非常幸運地遇到了這樣一位賢臣——鄒忌。而這位以雄辯著稱的謀臣的諷諫之法更是令人叫絕。今天,我們就來欣賞選自《戰(zhàn)國策》的歷史散文《鄒忌諷齊王納諫》。二、教學新課目標導(dǎo)學一:認識作品,了解相關(guān)文學常識《戰(zhàn)國策》:一部國別體史學著作,又稱《國策》。書中主要記載的是戰(zhàn)國時策士們的政治主張和言行策略,所以傳到西漢末時,由劉向整理校正后定名為《戰(zhàn)國策》。它是先秦歷史散文中的一枝奇葩,對后世史學和文學的影響極為深遠。

【教學提示】教師范讀,學生朗讀、齊讀,讀出氣勢,讀出感情,直至熟練背誦,亦可模仿課文錄音朗讀。1.閱讀小序。小序在這首詩歌中有什么作用?明確:交代時間、地點、事件的原因和結(jié)果以及當時的環(huán)境、背景。這首“絕命詩”表現(xiàn)了詩人從容、鎮(zhèn)定、大義凜然的情懷。2.學生齊讀課文,概括這三首詩的內(nèi)容。明確:第一首:回首征程——過去第二首:勉勵戰(zhàn)友——現(xiàn)在第三首:展望未來——將來3.比較三首詩的內(nèi)容,并分析其表現(xiàn)的思想感情。明確:第一首:寫自己?;厥渍鞒?,將犧牲視作移師新戰(zhàn)區(qū),豪情滿懷;表現(xiàn)了作者視死如歸的氣概和誓與反動派血戰(zhàn)到底的革命精神。第二首:給同志。勉勵戰(zhàn)友,勉勵后死者努力作戰(zhàn),以勝利捷報告慰死者;表現(xiàn)了作者心系革命、切盼人民解放的思想感情。第三首:望未來。展望未來,表現(xiàn)了作者樂觀堅定的革命信念和甘為信仰犧牲的革命精神。

解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導(dǎo)學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復(fù)習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.

方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時,應(yīng)結(jié)合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.

【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當不等式的兩邊都乘(或除以)一個負數(shù)時,不等號的方向才改變.三、板書設(shè)計1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學習不等式的基本性質(zhì),在學習過程中,可與等式的基本性質(zhì)進行類比,在運用性質(zhì)進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質(zhì)疑,通過練習中易出現(xiàn)的錯誤,引導(dǎo)學生歸納總結(jié),提升學生的自主探究能力.

【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當分子、分母是多項式時應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設(shè)計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.

把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.三、板書設(shè)計一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.

解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.

分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應(yīng)先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應(yīng)當乘的單項式,分子也相應(yīng)地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應(yīng)把幾種情況進行比較.三、板書設(shè)計應(yīng)用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結(jié)合,引導(dǎo)學生找不等關(guān)系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負數(shù),不等號的方向改變.這也是這節(jié)課學生容易出錯的地方.教學時要大膽放手,不要怕學生出錯,通過學生犯的錯誤引起學生注意,理解產(chǎn)生錯誤的原因,以便在以后的學習中避免出錯.

安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計1.一元一次不等式組的解法2.一元一次不等式組的實際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。