提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

部編版語文九年級上冊《懷疑與學問》說課稿

  • 人教部編版語文八年級上冊綜合性學習人無信不立教案

    人教部編版語文八年級上冊綜合性學習人無信不立教案

    預設(shè) (1)蘇州某生物科技有限公司生產(chǎn)假口罩和知名校長胡紅梅抄襲的行為與中華民族的傳統(tǒng)美德相悖。(2)只有講誠信,社會才會文明,國家才會興盛。3.學生列舉身邊關(guān)于誠信的故事,小組交流,全班展示,師適時點撥、總結(jié)、評價。師小結(jié):堅持誠信,就會贏得信任,誠信是獲得信任的前提?!驹O(shè)計意圖】通過事例分析,引導學生對不誠信行為的認識,從而進一步了解誠信的重要性。四、演講實踐,說“信”學生活動:1.根據(jù)自己的理解,寫一篇演講稿,說說如何才能做一個有誠信的人。2.全班交流討論。教師活動:1.根據(jù)學生的交流,及時做出總結(jié)評價。2.歸納總結(jié),引導學生形成“說誠信話,做誠信事,做誠信人”的行為準則。師小結(jié):誠信是為人之本,相信今天的誠信教育僅僅是我們邁向成功人生的第一步。誠信的力量可以點石成金。我們要崇尚誠信:身披一襲燦爛,心系一份執(zhí)著,帶著誠信上路。

  • 人教部編版語文八年級上冊課外古詩詞誦讀教案

    人教部編版語文八年級上冊課外古詩詞誦讀教案

    三、品讀,感悟詞人情懷1.品讀“醉”意設(shè)問1:再次默讀詞作。想一想:這首詞是圍繞哪一個字來寫的?從哪些地方可以看出來?預設(shè) “醉”字。表現(xiàn):沉醉不知歸路;誤入藕花深處。設(shè)問2:詞人因何而“醉”?預設(shè) 因美酒和美景而“醉”。設(shè)問3:除了美景、美酒,還有什么會讓李清照“醉”?預設(shè) 還有詞人和自己的伙伴在一起的那種美好情誼,對年輕時那些美好生活的回憶,都讓她深深陶醉。師小結(jié):李清照的“醉”既是酒醉更是陶醉。其實不管“興”也好,“記”也罷,“醉”也好,還是“誤”也好,作者是“字字如金”。因為“興”所以“醉”,因為“醉”所以“誤”,因為“醉”,所以常常記得。2.品字悟情設(shè)問1:如何理解兩個“爭渡”表達出的情感?預設(shè) 兩個“爭渡”,表現(xiàn)了主人公急于從迷途中找尋出路的焦灼心情。正是由于“爭渡”,所以又“驚起一灘鷗鷺”,把停棲在沙洲上的水鳥都嚇飛了。至此,詞戛然而止,言盡而意未盡,耐人尋味。

  • 人教部編版七年級語文上冊課外古詩詞誦讀(二)教案

    人教部編版七年級語文上冊課外古詩詞誦讀(二)教案

    材料二:錦瑟無端五十弦,一弦一柱思華年。莊生曉夢迷蝴蝶,望帝春心托杜鵑。滄海月明珠有淚,藍田日暖玉生煙。此情可待成追憶?只是當時已惘然。(李商隱《錦瑟》)相見時難別亦難,東風無力百花殘。春蠶到死絲方盡,蠟炬成灰淚始干。曉鏡但愁云鬢改,夜吟應覺月光寒。蓬山此去無多路,青鳥殷勤為探看。(李商隱《無題》)材料三:《十一月四日風雨大作》(其二)作于南宋光宗紹熙三年(1192)十一月四日。陸游自南宋孝宗淳熙十六年(1189)罷官后,閑居家鄉(xiāng)山陰農(nóng)村。當時詩人已經(jīng)68歲,雖然年邁,但愛國熱情絲毫未減,日夜惦念報效國家,可詩人收復國土的強烈愿望,在現(xiàn)實中已不可能實現(xiàn),于是,在一個“風雨大作”的夜里,詩人觸景生情,由情生思,在夢中實現(xiàn)了自己金戈鐵馬馳騁中原的愿望。死去元知萬事空,但悲不見九州同。王師北定中原日,家祭無忘告乃翁。(陸游《示兒》)材料四:清朝同治四年(1865),譚嗣同出生于北京宣武城,其父譚繼洵時任湖北巡撫。光緒元年(1875),譚嗣同10歲時,拜瀏陽著名學者歐陽中鵠為師。

  • 人教部編版七年級語文上冊課外古詩詞誦讀(一)教案

    人教部編版七年級語文上冊課外古詩詞誦讀(一)教案

    (1)示例一(橫向聯(lián)想) 李白的送別詩:①“思君不見下渝州”,表達依依惜別的無限情思,可謂語短情長。②“仍憐故鄉(xiāng)水,萬里送行舟”,意思是“我”還是憐愛故鄉(xiāng)的水,流過萬里送“我”遠行。這一句運用了擬人的修辭手法,將故鄉(xiāng)水擬人化,借寫故鄉(xiāng)水有情,不遠萬里,依依不舍送“我”遠別故鄉(xiāng),表達了詩人離開故鄉(xiāng)時依依不舍、思念故鄉(xiāng)的感情。③“孤帆遠影碧空盡,唯見長江天際流?!边@兩句看起來似乎是寫景,但在寫景中包含著一個充滿詩意的細節(jié)。李白一直把朋友送上船,船已經(jīng)揚帆而去,而他還在江邊目送遠去的船帆。李白望著帆影,一直看到帆影逐漸模糊,消失在碧空的盡頭,可見目送時間之長。帆影已經(jīng)消失了,然而李白還在翹首凝望,這才注意到一江春水,在浩浩蕩蕩地流向遠遠的水天交接之處?!拔ㄒ婇L江天際流”,是眼前景象,可是誰又能說是單純地寫景呢?李白對朋友的一片深情,李白的向往,不正體現(xiàn)在這富有詩意的神馳目注之中嗎?詩人的心潮起伏,不正像那浩浩東去的一江春水嗎?

  • 人教部編版語文八年級上冊課外古詩詞誦讀教案

    人教部編版語文八年級上冊課外古詩詞誦讀教案

    預設(shè) 反映了海邊農(nóng)村殘破、荒涼的景象,表現(xiàn)了作者對下層人民的深切同情?!驹O(shè)計意圖】“三分詩七分讀”,學生反復誦讀,與文本對話,感知詩歌的韻律和節(jié)奏,讀出情味,為理解詩歌情感做鋪墊。三、品讀詩歌,含英咀華師:請同學們仔細品讀這首詩,思考以下問題。設(shè)問1:曹植在海邊看到了怎樣的情景?預設(shè) 民不聊生,破敗荒涼。其中,“寄身”三句,從生活環(huán)境、生活艱難和居住環(huán)境三個方面實寫“邊海民”的悲慘生活。海民寄身于“草野”,過著非人的生活,生吞活剝,巢息穴居,所以說“象禽獸”;他們不敢出來,怕被人發(fā)現(xiàn)、抓走,每天就鉆在山林里邊,所以說“行止依林阻”。一個“依”字把難民們的實際活動和恐懼心理都表現(xiàn)出來了?!昂孟栉矣睢币痪渫ㄟ^對狐貍、兔子的描寫,側(cè)面描繪出海邊貧民家庭條件的惡劣以及家園的破敗。全詩正面描寫與側(cè)面烘托相結(jié)合,使海邊貧民悲慘的生活圖景躍然紙上。設(shè)問2:詩中哪一句最能體現(xiàn)作者的情感?

  • 北師大初中數(shù)學九年級上冊復雜圖形的三視圖2教案

    北師大初中數(shù)學九年級上冊復雜圖形的三視圖2教案

    教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

  • 北師大初中數(shù)學九年級上冊一元二次方程2教案

    北師大初中數(shù)學九年級上冊一元二次方程2教案

    三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)

  • 北師大初中數(shù)學九年級上冊用頻率估計概率2教案

    北師大初中數(shù)學九年級上冊用頻率估計概率2教案

    (4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?

  • 北師大初中數(shù)學九年級上冊正方形的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設(shè)計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于   第一、三象限內(nèi)當k<0時,兩支曲線分別位于   第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的性質(zhì)1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計反比例函數(shù)的性質(zhì)性質(zhì)當k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進行語言表述,訓練學生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學中壓強、壓力與受力面積之間的關(guān)系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關(guān)系,從而進一步建立反比例函數(shù)模型.三、板書設(shè)計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象2教案

    觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內(nèi)?對于函數(shù) ,兩支曲線又分別位于哪個象限內(nèi)?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結(jié)在進行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內(nèi),當k<0時,它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

  • 北師大初中數(shù)學九年級上冊正方形的判定2教案

    北師大初中數(shù)學九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數(shù)學九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學九年級上冊利用兩角判定三角形相似2教案

    北師大初中數(shù)學九年級上冊利用兩角判定三角形相似2教案

    合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學生練習:1. 討論隨堂練 習第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習第2題六、小結(jié)本節(jié)主要學習了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):

  • 北師大初中數(shù)學九年級上冊利用三邊判定三角形相似2教案

    北師大初中數(shù)學九年級上冊利用三邊判定三角形相似2教案

    (一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大小;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結(jié)本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.

上一頁123...141516171819202122232425下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。