
觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內(nèi)?對于函數(shù) ,兩支曲線又分別位于哪個象限內(nèi)?怎樣區(qū)別這兩個函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時,它的圖像位于一、三象限內(nèi),當(dāng)k<0時,它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。

補(bǔ)充題:為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實(shí)際問題確定一次函數(shù)的表達(dá)式某商店售貨時,在進(jìn)價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.

1.能夠聽、說、讀、寫字母H h, Ii,并能聽說認(rèn)讀以這些字母為首字母的單詞:hamburger, hot dog ,ice-cream, ice.2.聽懂Let’s do 中的字母和短語,并做出相應(yīng)的動作。如:A B C, look and see.3.聽懂Story time 的內(nèi)容。教學(xué)重點(diǎn) 掌握字母H h, I i單詞:hamburger, hot dog ,ice-cream, ice。教學(xué)難點(diǎn) 1.能夠聽懂一些指令性短語,并做出相應(yīng)的動作。2. Story time 的內(nèi)容教具準(zhǔn)備 1.本課時相關(guān)的單詞卡和圖片2. 教材相配套的教學(xué)錄音帶導(dǎo)學(xué)過程 二次備課預(yù)習(xí)提綱1. 課前了解一些食物英語的名稱。2. 課前先讓學(xué)生復(fù)習(xí)三年級上冊FoodPart A Let’s Learn 部分的單詞:cake ,bread, chicken…一.熱身/復(fù)習(xí)(warming up)1. 游戲:找朋友將學(xué)過的七個字母按大小寫分開,一部分學(xué)生拿大寫字母卡,一部分拿小寫字母卡。讓拿大寫字母卡的學(xué)生分別起立讀出手中的字母,那對應(yīng)小寫字母卡的學(xué)生跟到他前方舉起手中的字母,說:I’m… 兩人握手2.讓學(xué)生聽三年級上冊Part A Let’s Learn部分的錄音,了解相關(guān)的食物的名稱。.

一.溫故知新1.教師播放“One, two, three, four, five”歌曲的錄音帶,讓學(xué)生跟隨錄音一起唱。2.復(fù)習(xí)數(shù)字1-151)報數(shù):教師讓學(xué)生從1-15按順序用英文報數(shù),如果前一個學(xué)生報到15了,那么下一個學(xué)生就要從1再開始。2)游戲:叫號。教師把寫有one —fifteen的單詞卡發(fā)給學(xué)生,教師隨意說數(shù)字,誰拿著相應(yīng)的單詞卡,誰就站起來并大聲讀出該單詞。3.操練句型How many … can you see? I can see…和How many… do you have? I have…(使用15以內(nèi)的數(shù)字)二.新課呈現(xiàn) 1.教師將1-15的數(shù)字卡貼在黑板上,用其中的兩張組成一個算式,在兩張數(shù)字卡的中間寫上“+”號,其和為15以內(nèi),讓學(xué)生去計(jì)算,如Ten and five is fifteen.2.讓學(xué)生兩人一組,一個學(xué)生擺算式,另一個學(xué)生用英文說出結(jié)果。3.教師出示算式卡,如Nine and seven,讓學(xué)生快速說出兩數(shù)之和,并請最先說出答案的學(xué)生將算式用數(shù)字形式寫在黑板上,在單詞卡中找到相應(yīng)的單詞貼在和的位置上。

教學(xué)目標(biāo)1、知識目標(biāo):掌握等式的性質(zhì);會運(yùn)用等式的性質(zhì)解簡單的一元一次方程。2、能力目標(biāo):通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動的意識和情感,敢于面對數(shù)學(xué)活動中的困難,獲得成功的體驗(yàn),體會解決問題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學(xué)時數(shù) 2課時(本節(jié)課是第一課時)教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)

探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)

在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會知道.二、合作探究探究點(diǎn)一:線段長度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長;(2)根據(jù)(1)中的計(jì)算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.

教學(xué)反思: 1.本課時設(shè)計(jì)的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對數(shù)與形有一個初步的認(rèn)識.為將來的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學(xué)生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認(rèn)識.實(shí)際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識的同時,交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點(diǎn)不容忽視,在日常的教學(xué)中要時時注意.2.學(xué)生在小學(xué)時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學(xué)生對圓規(guī)的用法有一個新的認(rèn)識.3.在課堂練習(xí)中安排了度量一些三角形的邊的長度,目的是想通過度量使學(xué)生對“兩點(diǎn)之間線段最短”這一結(jié)論有一個感性的認(rèn)識,并為下面的教學(xué)做一個鋪墊.

方法總結(jié):對等式進(jìn)行變形,必須在等式的兩邊同時進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動,感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.

方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對照和分析,即可判定.探究點(diǎn)二:確定多邊形的對角線一個多邊形從一個頂點(diǎn)最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點(diǎn)可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;

解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時,要做到不重不漏,分類標(biāo)準(zhǔn)不同時,分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫線可以理解為點(diǎn)動成線.使用數(shù)學(xué)知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動.解:(1)點(diǎn)動成線;(2)線動成面;(3)面動成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識來解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識的連接點(diǎn),如第(1)題可將流星看作一個點(diǎn),則“點(diǎn)動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()

四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。

(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學(xué)生,估計(jì)該年級在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計(jì)圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計(jì)該年級在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計(jì)圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時,由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計(jì)圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).

本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運(yùn)算。從而提出問題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過問題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時教案時,著重從以下幾點(diǎn)考慮:1.先通過對實(shí)際問題的解決來引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。

1.會用二次根式的四則運(yùn)算法則進(jìn)行簡單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運(yùn)算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負(fù)實(shí)數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;

內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點(diǎn)之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實(shí)際問題的方法.

(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補(bǔ))來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。