
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練

方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當?shù)姆椒?/p>

【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當不等式的兩邊都乘(或除以)一個負數(shù)時,不等號的方向才改變.三、板書設(shè)計1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學習不等式的基本性質(zhì),在學習過程中,可與等式的基本性質(zhì)進行類比,在運用性質(zhì)進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質(zhì)疑,通過練習中易出現(xiàn)的錯誤,引導學生歸納總結(jié),提升學生的自主探究能力.

解:(1)設(shè)第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設(shè)計列分式方程解應用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準等量關(guān)系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.

解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.

探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結(jié)合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.

解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.

有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設(shè)計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結(jié)合,引導學生找不等關(guān)系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉(zhuǎn)中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應點到旋轉(zhuǎn)中心的距離相等,任意一組對應點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應線段相等,對應角相等.

2.放大空間,升華思考由于我對教材的二度開發(fā)留給了學生足夠的探索空間,課上學生探索數(shù)學的熱情被充分調(diào)動,我們欣喜地看到:有的學生嘗試著不同平面圖形的旋轉(zhuǎn);有的學生只用一種平面圖形,卻旋轉(zhuǎn)出不同的立體圖形;有的學生的思維并沒有停留在表象上,而是在深入地思考產(chǎn)生這一現(xiàn)象的原因……交流時學生的發(fā)現(xiàn)遠遠超出了我們的想象,這份生成帶給我們的是驚喜,是贊嘆,更是“以操作促思考”的教學行為結(jié)出的碩果。3.巧用課件,形成表象本節(jié)課,我充分運用現(xiàn)代信息技術(shù)將平面圖形經(jīng)過旋轉(zhuǎn)形成立體圖形的過程生動、逼真地再現(xiàn)出來,幫助學生將抽象的空間想象化為直觀,進而形成表象,深植于學生的腦海中,促進了學生空間觀念的形成??傊?,在這節(jié)課上,我堅持把“促進學生發(fā)展”作為第一要素貫穿于課堂教學的始終,讓學生在充滿著民主、探究、思考的氛圍中,積極操作、主動思考,發(fā)展了學生的空間觀念。

1、結(jié)合具體情境,體會生活中變化的量,感覺變化的量之間的關(guān)系,認識變化特征。2、通過自主探究,合作交流,在活動過程中培養(yǎng)學生用多種方法解決問題的能力,進一步發(fā)展學生觀察、比較、概括等能力,滲透分類的數(shù)學思想。3、經(jīng)歷數(shù)學活動的過程,體驗用多種方法研究問題的樂趣,感覺成功的快樂,增強學好數(shù)學的信心。教材安排了多個生活情境,以表格、圖像、關(guān)系式等不同方式呈現(xiàn),目的是讓學生通過多種方式認識變化的量的特征。因此,我確定本課的教學重點是結(jié)合具體情境,感覺變化的量之間的關(guān)系,認識變化特征。六年級的學生,抽象思維得到了一定的發(fā)展,但以前從未接觸過變化的量,從之前熟悉的定向思維模式轉(zhuǎn)向多向思維模式,并認識變化特征會有一定的困難。因此,我確定本課的教學難點是用多種方式認識變化的量的變化特征。本課需要教師準備多媒體課件,為學生準備學習單。

中班幼兒活潑好動有一定的獨立能力,富于想象,有較強的想象力,表現(xiàn)力和創(chuàng)造力。喜歡學習新的知識,對周圍的事物充滿好奇。數(shù)學由于其學科特點,相對而言比較抽象和枯燥,即使是粗淺的數(shù)學內(nèi)容也需要經(jīng)過一番分析與綜合,抽象與概括,判斷與推理。而中班的孩子是以具體形象思維為主的,感知物體的數(shù)量及其數(shù)字,對應關(guān)系是中班學習數(shù)學的重要階段。他們認識數(shù)字是建立在一定的感性經(jīng)驗基礎(chǔ)之上的,數(shù)字8是一個抽象的概念,如何讓孩子把數(shù)字8的形狀和已有的一些物體聯(lián)系起來,讓孩子能具體形象地認識記憶數(shù)字8,如何通過實際的物品讓幼兒去感知8的數(shù)量,這是我本次活動的重難點所在,為了解決這一難點,我采用了游戲操作法,《幼兒園教育指導綱要(試行)》對幼兒園的數(shù)學教育活動提出了新的規(guī)定和要求:即"能從生活和游戲中感受事物的數(shù)量關(guān)系并體驗到數(shù)學的重要和有趣……"中班初期的幼兒仍有著小班幼兒的學習特點,所以在中班初期的數(shù)教育活動中,比較適宜采用游戲方式,讓幼兒在游戲情境中反復操作,從而建構(gòu)數(shù)概念。為此我設(shè)計了游戲情景"送水果",讓幼兒帶著要求去找到相應的水果卡片,在拿物品、數(shù)物品中不知不覺地感受8的數(shù)量,這遵循了"教育來自于生活,又回歸于生活"的原則。

一、說教材1.教材分析《同級混合運算》是九年義務教育人教版二年級下冊第五單元的教學內(nèi)容。教材創(chuàng)設(shè)了“圖書閱覽室”問題情境,目的是為了讓學生了解脫式運算,了解沒有括號的算式里,只有加減法或只有乘除法,都要從左往右按順序計算。使他們樹立學習數(shù)學的信心,逐步提高他們的計算能力。 2.教學目標知識目標:借助解決問題的過程讓學生明白“在同級的混合運算中,應從左往右依次計算”的道理。能力目標:在經(jīng)歷探索和交流的過程中,理解并掌握同級運算的運算順序,能正確運用運算順序進行計算,并能正確進行脫式計算的書寫。情感目標:培養(yǎng)學生養(yǎng)成先看運算順序,再進行計算的良好習慣,同時提高學生的計算能力。3.教學重難點教學重點:理解并掌握同級運算的運算順序,并能正確地進行脫式計算。教學難點:能正確進行脫式計算,掌握脫式計算的書寫格式。二、說教法根據(jù)新課程理念,學生已有的知識、生活經(jīng)驗,結(jié)合教材的特點,我采用了以下教法:1、情景教學法:新課開始,讓學生通過圖書館這一情景,理解運算順序。2、發(fā)現(xiàn)、討論法:利用我們小組合作座位優(yōu)勢,讓小組間討論、說計算過程,從而掌握計算方法。三、說學法運用書本為載體,以觀察、比較、小組討論、推理和應用及口算為主線,目的是為了使學生對學習有興趣和留給學生學習思考的空間。

(二)教材分析《分數(shù)和小數(shù)的互化》是在學生學習了分數(shù)的意義分數(shù)與除法的關(guān)系和分數(shù)的基本性質(zhì)的基礎(chǔ)上教學的。學習這部分內(nèi)容是為以后學習分數(shù)和小數(shù)的混合運算打下基礎(chǔ)。例1是教學小數(shù)化分數(shù)。教材突出“先把小數(shù)化成分母為10、100、1000……的分數(shù)再寫成最簡分數(shù)”這一轉(zhuǎn)化過程。例2時教學6個數(shù)的大小比較,從中學習如何把分數(shù)化小數(shù),教材按照已掌握的分數(shù)與除法的關(guān)系和分數(shù)的基本性質(zhì),提出問題引導學生想出多種方法把分數(shù)化成小數(shù)。本節(jié)課的內(nèi)容,體現(xiàn)了數(shù)學知識的內(nèi)在聯(lián)系,學生通過學習這部分知識,將為今后學習分數(shù)與小數(shù)的混合運算打下良好的基礎(chǔ)。(三)教學目標1.知識目標:是學生理解并掌握分數(shù)和小數(shù)、小數(shù)和分數(shù)互化的方法,能正確地進行分數(shù)與小數(shù)、小數(shù)與分數(shù)之間的互化。2.能力目標:培養(yǎng)學生的觀察、歸納和概括能力。3.情感目標:體驗合作學習的快樂,感受數(shù)學在生活中的應用價值,滲透“事物之間互相聯(lián)系、互相轉(zhuǎn)化”的辯證唯物主義思想。

一、教材及學情分析“數(shù)學廣角”是新教材在向?qū)W生滲透數(shù)學思想方面做出的新嘗試。本課內(nèi)容重在向?qū)W生滲透簡單的排列組合的數(shù)學思想方法,并初步培養(yǎng)學生有順序地、全面地思考問題的意識。本課內(nèi)容是學生在小學階段初次接觸有關(guān)排列組合的知識,但是在日常生活中,有很多事情是用排列組合來解決的,如:衣服的搭配、付錢時面值的選擇等等。二、學習目標及教學重、難點通過對本教材的深入研究,結(jié)合新課程的三維目標理念,我確定了如下的學習目標:1.通過觀察、猜測、操作等活動,找出簡單事物的排列數(shù)與組合數(shù)。2.經(jīng)歷探索簡單事物排列與組合規(guī)律的過程,掌握有序地全面思考問題的方法。三、教法、學法設(shè)計根據(jù)本課教學內(nèi)容的特點和學生的思維特點,我采用情境教學法、操作發(fā)現(xiàn)法、直觀演示法。為使學生能夠有效地學習,主動的建構(gòu)知識。我采用合作交流法、動手操作法、自主探究的學習方法,讓學生在一系列活動中感知有順序的搭配。

光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設(shè)計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據(jù)單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象

一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.

2、掌握序數(shù)詞,會用第幾準確地表示物體在序列中的位置。認真聽清楚各項活動的規(guī)則,用過的物品能歸還原處。材料準備:1、幼兒人手一本《幼兒園課程指導.數(shù)學》。2、小黑板一塊,粉筆若干。投影儀活動過程:

2.應用意識方面,解決問題能力較差。一方面是符號意識、應用意識需要發(fā)展,從現(xiàn)實問題抽象出數(shù)學問題的能力和主動用數(shù)學思想分析現(xiàn)實問題的習慣。二是分析問題、解決問題的策略缺乏、靈活使用的能力不足(幾何直觀、模型思想、歸納、類比、逆向思考等方法)。五、教法、學法教法:利用談話法,引導學生思考、探究的過程,實現(xiàn)教師主導下的學生的自主建構(gòu)。利用講解法,在探究學習的基礎(chǔ)上,教師和學生共同對重點、難點進行梳理,引導學生建立清晰、系統(tǒng)的知識結(jié)構(gòu)。利用練習法,鞏固知識,發(fā)展學生的運算能力、符合意識、應用意識。學法:自主探究,有利于形成主動思考的習慣,思維能力獲得提高。成功的探索使其獲得理智感,有益于學習興趣的培養(yǎng)。合作學習,交流比較,質(zhì)疑反思的經(jīng)驗有利于學生創(chuàng)新能力的提升。合作交流同時也促進個性、社會性的發(fā)展。

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。