
方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

五、回顧總結:總結:1、投影、中心投影 2、如何確定光源(小組交流總結.)六、自我檢測:檢測:晚上,小華在馬路的一側散步,對面有一路燈,當小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀涍^的路徑是怎樣的?它與小華所走的路線有何位置關系?七、課后延伸:延伸:課本128頁習題5.1八、板書設計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經歷實踐、探索的過程,掌握了中心投影的含義,進一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達能力.

(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結:由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.

首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調換,至少應該進多少件西裝?六、課堂小結:盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。

三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學生自己閱讀課本內容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。

三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)

在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質與直角三角形的性質.【類型三】 利用正方形的性質證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經常連接對角線,這樣可以使分散的條件集中.

1.經歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或實物原型.一、情境導入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側成峰,遠近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.

方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質解方程用等式的性質解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結論的嚴密性.

探究點三:列一元一次方程解應用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結果,不寫分析過程)解析:(1)先設該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結:解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程再求解.

本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和興趣。

1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;

方法總結:平行線與角的大小關系、直線的位置關系是緊密聯(lián)系在一起的.由兩直線平行的位置關系得到兩個相關角的數(shù)量關系,從而得到相應角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構造同位角、內錯角或同旁內角,但是又要保證原有條件和結論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質),即∠B+∠BED+∠D=360°.方法總結:過一點作一條直線或線段的平行線是我們常作的輔助線.

方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.

意圖:(1)介紹與勾股定理有關的歷史,激發(fā)學生的愛國熱情;(2)學生加強了對數(shù)學史的了解,培養(yǎng)學習數(shù)學的興趣;(3)通過讓部分學生搜集材料,展示材料,既讓學生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學的成就感到自豪.也有同學提出:當代中國數(shù)學成就不夠強,還應發(fā)奮努力.有同學能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內容:教師提問:通過這節(jié)課的學習,你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結合的思想方法;(2)教師了解學生對本節(jié)課的感受并進行總結;(3)培養(yǎng)學生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調動學生學習的積極性,所以學生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結合思想,學生對勾股定理的歷史的感悟及對勾股定理應用的認識等等.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。