
1、教材的地位《觀察物體》這節(jié)課是人教版《義務(wù)教育教科書?數(shù)學(xué)(二年級(jí)上冊(cè))》第五單元的第一課時(shí)。教材是從學(xué)生已有生活經(jīng)驗(yàn)出發(fā)以及已學(xué)習(xí)了位置知識(shí)的基礎(chǔ)上,借助于生活中的實(shí)物和學(xué)生的操作活動(dòng)進(jìn)行教學(xué)的。主要幫助學(xué)生建立初步的空間觀念,發(fā)展他們的形象思維,通過(guò)一些活動(dòng),使學(xué)生認(rèn)識(shí)到,從不同的角度觀察同一個(gè)物體,看到的物體的形狀可能是不同的,并讓學(xué)生初步體會(huì)局部與整體的關(guān)系,通過(guò)這部分內(nèi)容的教學(xué),不但可以使學(xué)生學(xué)會(huì)從不同的角度觀察物體,而且又為以后學(xué)習(xí)有關(guān)幾何圖形的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。 2、教學(xué)目標(biāo)依照《新課程標(biāo)準(zhǔn)》的要求,結(jié)合教材和學(xué)生的特點(diǎn),從知識(shí)與技能、過(guò)程與方法和情感態(tài)度價(jià)值觀三方面制定以下教學(xué)目標(biāo):(1)能辨認(rèn)并能想象從不同位置看到的簡(jiǎn)單物體的形狀。 (2)在探究中,學(xué)生掌握全面、正確的觀察物體的基本方法,并感受到局部與整體的關(guān)系。 (3)通過(guò)活動(dòng),感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生觀察物體的興趣和熱情。3、教學(xué)重點(diǎn)、難點(diǎn)由于小學(xué)二年級(jí)的學(xué)生方位感不強(qiáng),他們往往前后不分,左右搞錯(cuò),觀察周圍的事物也是比較單純、直觀地看表面。

二、說(shuō)教學(xué)目標(biāo)知識(shí)與技能:初步理解“方程的解”和“解方程”的含義,以及之間的聯(lián)系和區(qū)別。能用等式的性質(zhì)解形如X±a=b的方程,掌握解方程的格式和寫法。初步學(xué)會(huì)檢驗(yàn)?zāi)硞€(gè)數(shù)是否是方程的解,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。過(guò)程和方法:通過(guò)探索、討論、交流等活動(dòng),讓學(xué)生初步理解“方程的解”和“解方程”的概念。經(jīng)歷運(yùn)用等式的性質(zhì)探究方程解法的過(guò)程,體會(huì)方程的解法和等式的性質(zhì)之間的聯(lián)系。情感、態(tài)度與價(jià)值觀:1. 學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)有好奇心和求知欲。2. 在觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)中,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。重點(diǎn):方程的解和解方程的概念,初步掌握用等式性質(zhì)來(lái)解簡(jiǎn)易方程的方法。難點(diǎn):區(qū)別方程的解和解方程的含義。解方程的算理。三、說(shuō)教法與學(xué)法教法:新課標(biāo)指出,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者,充分發(fā)揮學(xué)生的主體性。根據(jù)這一理念,我在教學(xué)中通過(guò)觀察、猜想、驗(yàn)證等方式,自主探索、自主學(xué)習(xí)。有目的地運(yùn)用知識(shí)遷移的規(guī)律,引導(dǎo)學(xué)生進(jìn)行觀察、比較、分析、概括,培養(yǎng)學(xué)生的邏輯思維能力。學(xué)法:①讓學(xué)生學(xué)會(huì)以舊引新,掌握并運(yùn)用知識(shí)遷移進(jìn)行學(xué)習(xí)的方法;②讓學(xué)生學(xué)會(huì)自主發(fā)現(xiàn)問(wèn)題,分析問(wèn)題,解決問(wèn)題的方法。

一、說(shuō)教材《加減混合》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(人教版)二年級(jí)上冊(cè)第28頁(yè)的例3和例4。這個(gè)知識(shí)點(diǎn)是在上一課時(shí)《連加、連減》知識(shí)的基礎(chǔ)上進(jìn)行的一個(gè)提升和知識(shí)點(diǎn)的整合。二、教學(xué)目標(biāo) 1、結(jié)合具體的情境,讓學(xué)生經(jīng)理探索加減混合運(yùn)算的計(jì)算方法的過(guò)程。 2、使學(xué)生掌握100以內(nèi)數(shù)加減混合運(yùn)算的計(jì)算方法,并學(xué)習(xí)筆算的書寫格式,掌握簡(jiǎn)便寫法。 3、讓學(xué)社在解決簡(jiǎn)單問(wèn)題的過(guò)程中,體會(huì)數(shù)學(xué)與生活的密切聯(lián)系。三、說(shuō)教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):正確計(jì)算加減混合式題。 難點(diǎn):優(yōu)化算法,正確計(jì)算加減混合式題。 四、說(shuō)教學(xué)程序 根據(jù)本節(jié)課的特點(diǎn),我準(zhǔn)備采用演示法、比較法、談話法、討論法和練習(xí)法等多種教學(xué)方法,設(shè)計(jì)了如下教學(xué)過(guò)程:

說(shuō)教材>是人教版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)第五單元P64的內(nèi)容。在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)認(rèn)識(shí)了等式與方程,這便為本節(jié)課的學(xué)習(xí)(構(gòu)建等量關(guān)系的數(shù)學(xué)模型)打下一定的基礎(chǔ),同時(shí)也為以后解簡(jiǎn)單方程埋下伏筆,因此本節(jié)課內(nèi)容也是本章中的一個(gè)重點(diǎn)?;诒竟?jié)內(nèi)容的特點(diǎn),我將本節(jié)課的教學(xué)目標(biāo)確定為:1.知識(shí)與技能:理解等式的性質(zhì)并用語(yǔ)言表述,能利用等式的性質(zhì)解決簡(jiǎn)單問(wèn)題;2.過(guò)程與方法:在實(shí)驗(yàn)操作、討論、歸納等活動(dòng)中,經(jīng)歷探究等式基本性質(zhì)的過(guò)程;3.情感態(tài)度與價(jià)值觀:使學(xué)生積極參與數(shù)學(xué)活動(dòng),體驗(yàn)探索等式基本性質(zhì)的挑戰(zhàn)性與得出數(shù)學(xué)結(jié)論的確定性。教學(xué)重難點(diǎn):了解等式的基本性質(zhì),并能簡(jiǎn)單運(yùn)用。說(shuō)學(xué)情:小學(xué)五年級(jí)的學(xué)生已具備一定的思考能力,又樂(lè)于動(dòng)手操作、合作探究。因此教學(xué)中我引導(dǎo)學(xué)生認(rèn)真觀察-獨(dú)立思考-自主探究-合作交流,遵循由淺入深,由具體到抽象的規(guī)律,為學(xué)生創(chuàng)設(shè)一個(gè)和諧的學(xué)習(xí)環(huán)境,讓孩子們?cè)谔剿髦薪涣鳌⒏惺?、理解和概括出等式的基本性質(zhì)。

一、 說(shuō)教材1、教材內(nèi)容:人教版小學(xué)數(shù)學(xué)第十冊(cè)《解簡(jiǎn)易方程》及練習(xí)二十六1~5題。2、教材簡(jiǎn)析:本節(jié)課是在學(xué)生已經(jīng)學(xué)過(guò)用字母表示數(shù)和數(shù)量關(guān)系,掌握了求未知數(shù)x的方法的基礎(chǔ)上學(xué)習(xí)的。通過(guò)學(xué)習(xí)使學(xué)生理解方程的意義、方程的解和解方程等概念,掌握方程與等式之間的關(guān)系,掌握解方程的一般步驟,為今后學(xué)習(xí)列方程解應(yīng)用題解決實(shí)際問(wèn)題打下基礎(chǔ)。3、教學(xué)目標(biāo):(1)使學(xué)生理解方程的意義、方程的解和解方程的概念,掌握方程與等式之間的關(guān)系。(2)掌握解方程的一般步驟,會(huì)解簡(jiǎn)單的方程,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。(3)結(jié)合教學(xué),培養(yǎng)學(xué)生事實(shí)求是的學(xué)習(xí)態(tài)度,求真務(wù)實(shí)的科學(xué)精神,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。滲透一一對(duì)應(yīng)的數(shù)學(xué)思想。

一、說(shuō)教材1、教學(xué)內(nèi)容:本課內(nèi)容選自2013人教版小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)第一單元《長(zhǎng)度單位》例1、例2、例3的教學(xué)內(nèi)容。 2、教材所處的地位和作用本課是在學(xué)生已經(jīng)對(duì)長(zhǎng)短的概念有了初步的認(rèn)識(shí),并學(xué)會(huì)直觀比較一些物體長(zhǎng)短的基礎(chǔ)上來(lái)學(xué)習(xí)一些計(jì)量長(zhǎng)度的知識(shí),這些知識(shí)可以幫助學(xué)生認(rèn)識(shí)長(zhǎng)度單位,初步建立1厘米的長(zhǎng)度觀念。 3、學(xué)情分析二年級(jí)學(xué)生經(jīng)過(guò)一年的學(xué)習(xí),已經(jīng)認(rèn)識(shí)了100以內(nèi)的數(shù),學(xué)會(huì)了一些簡(jiǎn)單的統(tǒng)計(jì)方法。這些知識(shí)儲(chǔ)備為我們進(jìn)一步學(xué)習(xí)新知識(shí)打下基礎(chǔ)。二、說(shuō)教學(xué)目標(biāo)1、知識(shí)與技能目標(biāo):統(tǒng)一長(zhǎng)度單位,建立1厘米的觀念,會(huì)用厘米測(cè)量。2、情感目標(biāo):在小組合作測(cè)量的過(guò)程中,培養(yǎng)學(xué)生樂(lè)于探究的學(xué)習(xí)態(tài)度,學(xué)會(huì)與他人合作。體驗(yàn)知識(shí)的形成過(guò)程,進(jìn)一步體驗(yàn)學(xué)習(xí)成功帶來(lái)的喜悅。

二、學(xué)情分析五年級(jí)的學(xué)生具備了一定的思維能力,因此,教學(xué)過(guò)程中創(chuàng)設(shè)的問(wèn)題情境力求貼近學(xué)生的生活,從而引起學(xué)生的思考。由于學(xué)生概括能力較弱,推理能力還有待發(fā)展,很大程度上還需要依賴具體形象的經(jīng)驗(yàn)材料來(lái)理解抽象邏輯關(guān)系。所以在教學(xué)時(shí),注重讓學(xué)生充分試驗(yàn)、收集、分析數(shù)據(jù),幫助他們對(duì)生活中的常見(jiàn)現(xiàn)象發(fā)生的可能性進(jìn)行正確的分析和判斷,所以本節(jié)課中,應(yīng)多為學(xué)生創(chuàng)自主學(xué)習(xí)、合作學(xué)習(xí)的機(jī)會(huì),讓他們主動(dòng)參與、勤于動(dòng)手,從而樂(lè)于探究。二、教學(xué)目標(biāo)新的課程標(biāo)準(zhǔn)中倡導(dǎo)教師要關(guān)注每一個(gè)學(xué)生的發(fā)展,教師應(yīng)該是教育教學(xué)的促進(jìn)者和引導(dǎo)者,因此,我結(jié)合本節(jié)課的內(nèi)容和學(xué)生的實(shí)際,并從知識(shí)與技能、過(guò)程與方法、情感態(tài)度與價(jià)值觀的三維目標(biāo)整合的角度特確定本節(jié)課的教學(xué)目標(biāo) 1.通過(guò)試驗(yàn)操作,懂得有些事情的發(fā)生是確定的,有些則是不確定的,并用“一定”“不可能”“可能”等詞語(yǔ)來(lái)描述知道事情發(fā)生的可能性是有大有小的,且可能性的大小與物體數(shù)量有關(guān)。2.經(jīng)歷猜測(cè)、試驗(yàn)、收集與分析試驗(yàn)結(jié)果等過(guò)程。 3培養(yǎng)學(xué)生的隨機(jī)觀念以及培養(yǎng)學(xué)生判斷、推理和合作探究的能力。

同理,圖③中,三角形的三邊長(zhǎng)分別為2,5,3;同理,圖④中,三角形的三邊長(zhǎng)分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個(gè)圖形中的三角形均為格點(diǎn)三角形,可以根據(jù)勾股定理求出各邊的長(zhǎng),然后根據(jù)三角形三邊的長(zhǎng)度是否成比例來(lái)判斷兩個(gè)三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長(zhǎng)按大小順序排列,然后分別計(jì)算他們對(duì)應(yīng)邊的比,最后由比值是否相等來(lái)確定兩個(gè)三角形是否相似.三、板書設(shè)計(jì)相似三角形的判定定理3:三邊成比例的兩個(gè)三角形相似.從學(xué)生已學(xué)的知識(shí)入手,通過(guò)設(shè)置問(wèn)題,引導(dǎo)學(xué)生進(jìn)行計(jì)算、推理和歸納,提高分析問(wèn)題和解決問(wèn)題的能力.感受兩個(gè)三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會(huì)事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì).

(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對(duì)應(yīng)于相似三 角形的判定的判定定理1,SAS對(duì)應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對(duì)應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大小;(2)△ABC與△A′B′C′相似嗎?說(shuō)說(shuō)你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個(gè)三 角形相似.(三)例題學(xué)習(xí)例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個(gè)三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習(xí)四、小結(jié)本節(jié)學(xué) 習(xí)了相似三角形的判定定理3,使用時(shí)一定要注意它使用的條件.

故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

教學(xué)目標(biāo):1.會(huì)畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過(guò) 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來(lái)的三種視圖畫出來(lái),并與同伴交流。比較:小亮畫出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫的對(duì)不對(duì)?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。

1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.

證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。

方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來(lái)判定直角三角形,從而推出兩線的垂直關(guān)系.探究點(diǎn)二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號(hào)).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個(gè)條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計(jì)勾股定理的逆定理: 如果一個(gè)三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.

解析:熟記常見(jiàn)幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪廓線.在得出原立體圖形的形狀后,也可以反過(guò)來(lái)想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過(guò)程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過(guò)程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?

解:方法一:因?yàn)镈E∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因?yàn)镈F∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因?yàn)镈E∥BC,所以∠ADE=∠B.又因?yàn)镈F∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長(zhǎng),常通過(guò)找三角形相似得到成比例線段而求得,因此選擇哪兩個(gè)三角形就成了解題的關(guān)鍵,這就需要通過(guò)已知的線段和所求的線段分析得到.三、板書設(shè)計(jì)(1)相似三角形的定義:三角分別相等、三邊成比例的兩個(gè)三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個(gè)三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗(yàn)事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動(dòng)手探究、歸納總結(jié)的能力.

合探2 與同伴合作,兩個(gè)人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時(shí),∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個(gè)三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個(gè)三角形相似.這個(gè)定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點(diǎn),DE∥BC,AB= 7,AD=5,DE=10,求B C的長(zhǎng)。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個(gè)三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個(gè)銳角相等的兩個(gè)直角三角形是否相似?為什么?2.自己獨(dú)立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個(gè)定理.七、作業(yè):

●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問(wèn)題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問(wèn)題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過(guò)溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過(guò)比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。