提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)的判定及三角形的內(nèi)切圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線(xiàn),根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 大班數(shù)學(xué)活動(dòng):復(fù)習(xí)單數(shù)和雙數(shù)課件教案

    大班數(shù)學(xué)活動(dòng):復(fù)習(xí)單數(shù)和雙數(shù)課件教案

    2、幼兒的動(dòng)手、分辨能力,發(fā)展幼兒思維的靈活性。活動(dòng)準(zhǔn)備:幾何圖形掛件一人一個(gè),數(shù)字卡片,演示教具,魔術(shù)卡每人一張活動(dòng)過(guò)程:一、帶幼兒進(jìn)知識(shí)宮,激發(fā)幼兒的興趣。師:今天老師要帶小朋友到知識(shí)宮去玩。在知識(shí)宮,老師要給小朋友好多禮物,但這些禮物一定要小朋友動(dòng)腦筋才能夠得到。第一份禮物需根據(jù)自己掛著的圖形和圖形上的數(shù)字找座位,找到了,這個(gè)圖形就作為第一份禮物送給你們。

  • 二年級(jí)數(shù)學(xué)下冊(cè)第八單元克和千克教案

    二年級(jí)數(shù)學(xué)下冊(cè)第八單元克和千克教案

    1、拿出一本數(shù)學(xué)教課書(shū),和一只筆,提問(wèn):哪個(gè)重有些?2、肯定學(xué)生的回答,并讓學(xué)生“掂一掂”,然后讓學(xué)生說(shuō)說(shuō)有什么樣的感覺(jué)。3、從剛才的實(shí)踐得出結(jié)論:物體有輕有重。板書(shū)課題。二、觀(guān)察、操作領(lǐng)悟新知1、出示主題掛圖,物體的輕重的計(jì)量。觀(guān)察主題掛圖。(1、)請(qǐng)同學(xué)們觀(guān)察一下,這幅圖畫(huà)的是什么?(2、)這幅圖中的小朋友和阿姨在說(shuō)什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R?jiàn)物品的質(zhì)量,我們現(xiàn)在來(lái)交流以下好嗎?表示物品有多重,可以用克和千克單位來(lái)表示。(4、)在學(xué)生說(shuō)的同時(shí),老師拿出有準(zhǔn)備的東西展示。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)30°,45°,60°角的三角函數(shù)值2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)30°,45°,60°角的三角函數(shù)值2教案

    教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過(guò)程中體會(huì)數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計(jì)算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫(xiě)字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長(zhǎng)有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長(zhǎng)有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)三角形的外角1教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)三角形的外角1教案

    探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無(wú)法直接得出∠BPC>∠A,延長(zhǎng)BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長(zhǎng)BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時(shí),兩個(gè)角應(yīng)是同一個(gè)三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書(shū)設(shè)計(jì)三角形的外角外角:三角形的一邊與另一邊的延長(zhǎng)線(xiàn)所組成的 角,叫做三角形的外角推論1:三角形的一個(gè)外角等于和它不相鄰的兩 個(gè)內(nèi)角的和推論2:三角形的一個(gè)外角大于任何一個(gè)和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過(guò)的知識(shí)來(lái)推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問(wèn)題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)三角形的外角2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)三角形的外角2教案

    證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類(lèi)型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線(xiàn)分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類(lèi)型三】 利用正方形的性質(zhì)證明線(xiàn)段相等如圖,已知過(guò)正方形ABCD的對(duì)角線(xiàn)BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線(xiàn)互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線(xiàn)互相垂直平分證明線(xiàn)段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線(xiàn),這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線(xiàn)相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線(xiàn)互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線(xiàn)互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀(guān)點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線(xiàn)互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線(xiàn)________________的四邊形是矩形;(2)對(duì)角線(xiàn)____________的平行四邊形是矩形;(3)對(duì)角線(xiàn)__________的平行四邊形是正方形;(4)對(duì)角線(xiàn)________________的矩形是正方形;(5)對(duì)角線(xiàn)________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線(xiàn)上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線(xiàn)相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線(xiàn)互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線(xiàn)互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀(guān)點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線(xiàn)互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線(xiàn)________________的四邊形是矩形;(2)對(duì)角線(xiàn)____________的平行四邊形是矩形;(3)對(duì)角線(xiàn)__________的平行四邊形是正方形;(4)對(duì)角線(xiàn)________________的矩形是正方形;(5)對(duì)角線(xiàn)________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線(xiàn)上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線(xiàn)長(zhǎng)為( );2))正方形ABCD中,對(duì)角線(xiàn)AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線(xiàn)AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線(xiàn)互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線(xiàn)相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線(xiàn)互相垂直平分 C對(duì)角線(xiàn)平分一組對(duì)角 D對(duì)角線(xiàn)相等. 6)、正方形對(duì)角線(xiàn)長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫(xiě)2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線(xiàn)上.求出娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線(xiàn)EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過(guò)坡度得到∠ECF=30°,通過(guò)平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用2教案

    教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過(guò)程,進(jìn)一步體會(huì)三角函數(shù)在解決問(wèn)題過(guò)程中的應(yīng)用.2.能夠把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,能夠借助于計(jì)算器進(jìn)行有關(guān)三角函數(shù)的計(jì)算,并能對(duì)結(jié)果的意義進(jìn)行說(shuō)明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和解決問(wèn)題的能力.(三)情感與價(jià)值觀(guān)要求1.在經(jīng)歷弄清實(shí)際問(wèn)題題意的過(guò)程中,畫(huà)出示意圖,培養(yǎng)獨(dú)立思考問(wèn)題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動(dòng),提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過(guò)程,進(jìn)一步體會(huì)三角函數(shù)在解決問(wèn)題過(guò)程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識(shí)和解決問(wèn)題的能力.教學(xué)難點(diǎn)根據(jù)題意,了解有關(guān)術(shù)語(yǔ),準(zhǔn)確地畫(huà)出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線(xiàn)與水平線(xiàn)AN垂直.他們?cè)贏(yíng)處測(cè)得塔尖D的仰角為45°,再沿著射線(xiàn)AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長(zhǎng),進(jìn)而求出EF的長(zhǎng),得出答案.解:延長(zhǎng)DE交AB延長(zhǎng)線(xiàn)于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類(lèi)問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線(xiàn)構(gòu)造直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計(jì)算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計(jì)算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計(jì)算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計(jì)算器一定要注意計(jì)算器說(shuō)明書(shū)的保管與使用。方法歸納在解決直角三角形的相關(guān)問(wèn)題時(shí),常常使用計(jì)算器幫助我們處理比較復(fù)雜的計(jì)算。

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)等腰三角形的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)等腰三角形的性質(zhì)教案

    方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線(xiàn)的問(wèn)題,其頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)是常見(jiàn)的輔助線(xiàn).三、板書(shū)設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱(chēng)圖形;等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高重合(也稱(chēng)“三線(xiàn)合一”),它們所在的直線(xiàn)都是等腰三角形的對(duì)稱(chēng)軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀(guān)操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線(xiàn)合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形判定定理的證明1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形判定定理的證明1教案

    當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書(shū)設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問(wèn)題,總結(jié)常見(jiàn)的輔助線(xiàn)添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)角平分線(xiàn)的性質(zhì)教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)角平分線(xiàn)的性質(zhì)教案

    解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線(xiàn),即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線(xiàn),∴∠MAB=12∠CAB=30°.方法總結(jié):通過(guò)本題要掌握角平分線(xiàn)的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線(xiàn)是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.角平分線(xiàn)的性質(zhì):角平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線(xiàn)的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線(xiàn)的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練

  • 北師大初中七年級(jí)數(shù)學(xué)下冊(cè)三角形的三邊關(guān)系教案

    北師大初中七年級(jí)數(shù)學(xué)下冊(cè)三角形的三邊關(guān)系教案

    方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類(lèi)問(wèn)題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).三、板書(shū)設(shè)計(jì)1.三角形按邊分類(lèi):有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問(wèn)題的過(guò)程,抓住“任意的三條線(xiàn)段能不能?chē)梢粋€(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問(wèn)題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能?chē)?,有的不能?chē)?,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能?chē)扇切蔚娜龡l邊之間到底有什么關(guān)系”.通過(guò)觀(guān)察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力

上一頁(yè)123...101112131415161718192021下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!

PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。