
通過與學(xué)生講解切線長(zhǎng)定義,讓學(xué)生在參與、合作中有一個(gè)猜想,再進(jìn)一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學(xué)的方法加以證明。問題的解決,使學(xué)生既能解決新的問題,同時(shí)應(yīng)用到全等、切線的性質(zhì)等知識(shí),同時(shí)三條輔助線中,兩條運(yùn)用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學(xué)習(xí)學(xué)生們已經(jīng)對(duì)切線長(zhǎng)定理有了較深刻的了解。為了加深學(xué)生對(duì)定理的認(rèn)識(shí)并培養(yǎng)學(xué)生的應(yīng)用意識(shí)學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨(dú)立完成,加深對(duì)切線長(zhǎng)定理的理解,老師進(jìn)行點(diǎn)評(píng),對(duì)于例2,由師生共同分析完成,交進(jìn)行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個(gè)層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識(shí)體系中,使學(xué)生的知識(shí)體系得到補(bǔ)充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識(shí)成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識(shí)。

本節(jié)課的設(shè)計(jì)是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。2、學(xué)法研究“贈(zèng)人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運(yùn)用舊知識(shí)的鑰匙去打開新知識(shí)的大門,進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問題,通過基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

【類型一】 逆用積的乘方進(jìn)行簡(jiǎn)便運(yùn)算計(jì)算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進(jìn)行計(jì)算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對(duì)公式an·bn=(ab)n要靈活運(yùn)用,對(duì)于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運(yùn)用此公式可進(jìn)行簡(jiǎn)便運(yùn)算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大?。?13×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關(guān)鍵.三、板書設(shè)計(jì)1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運(yùn)用在本節(jié)的教學(xué)過程中教師可以采用與前面相同的方式展開教學(xué).教師在講解積的乘方公式的應(yīng)用時(shí),再補(bǔ)充講解積的乘方公式的逆運(yùn)算:an·bn=(ab)n,同時(shí)教師為了提高學(xué)生的運(yùn)算速度和應(yīng)用能力,也可以補(bǔ)充講解:當(dāng)n為奇數(shù)時(shí),(-a)n=-an(n為正整數(shù));當(dāng)n為偶數(shù)時(shí),(-a)n=an(n為正整數(shù))

答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計(jì)1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項(xiàng)式必須是二項(xiàng)式,兩項(xiàng)都能寫成平方的形式,且符號(hào)相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通??紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.

方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計(jì)算代數(shù)式.三、板書設(shè)計(jì)1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類似,因此在教學(xué)中可以利用該優(yōu)勢(shì)展開教學(xué),在探究過程中可以進(jìn)一步發(fā)揮學(xué)生的主動(dòng)性,盡可能地讓學(xué)生在已有知識(shí)的基礎(chǔ)上,通過自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識(shí),進(jìn)而理解運(yùn)算法則

1.知識(shí)目標(biāo):在回顧與思考中建立本章的知識(shí)框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標(biāo):進(jìn)一步體會(huì)證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進(jìn)一步掌握綜合法的證明方法,結(jié)合實(shí)例體會(huì)反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語言表達(dá)論證過程的能力.3.情感價(jià)值觀要求通過積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣.重點(diǎn):通過例題的講解和課堂練習(xí)對(duì)所學(xué)知識(shí)進(jìn)行復(fù)習(xí)鞏固難點(diǎn):本章知識(shí)的綜合性應(yīng)用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個(gè)內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。

教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?

解析:熟記常見幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時(shí)要正確區(qū)分,如利用列表法求概率時(shí),不重復(fù)在列表中有空格,重復(fù)在列表中則不會(huì)出現(xiàn)空格.三、板書設(shè)計(jì)用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識(shí).在活動(dòng)中進(jìn)一步發(fā)展學(xué)生的合作交流意識(shí),提高學(xué)生對(duì)所研究問題的反思和拓展的能力,逐步形成良好的反思意識(shí).鼓勵(lì)學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識(shí).

解:方法一:因?yàn)镈E∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因?yàn)镈F∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因?yàn)镈E∥BC,所以∠ADE=∠B.又因?yàn)镈F∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長(zhǎng),常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個(gè)三角形就成了解題的關(guān)鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設(shè)計(jì)(1)相似三角形的定義:三角分別相等、三邊成比例的兩個(gè)三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個(gè)三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗(yàn)事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動(dòng)手探究、歸納總結(jié)的能力.

(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對(duì)應(yīng)于相似三 角形的判定的判定定理1,SAS對(duì)應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對(duì)應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個(gè)三 角形相似.(三)例題學(xué)習(xí)例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個(gè)三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習(xí)四、小結(jié)本節(jié)學(xué) 習(xí)了相似三角形的判定定理3,使用時(shí)一定要注意它使用的條件.

[想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測(cè)量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點(diǎn)拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測(cè)出影子的長(zhǎng)度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時(shí),再量旗桿的影子,此時(shí)旗桿的影子長(zhǎng)度就是這個(gè)旗桿的高度.2、可以采用立一個(gè)已知長(zhǎng)度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長(zhǎng)度根據(jù)線段成比例來進(jìn)行計(jì)算.3、拿一根知道長(zhǎng)度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時(shí)人到旗桿的距離、人手臂的長(zhǎng)度和棒長(zhǎng),就可以利用三角形相似來進(jìn)行計(jì)算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識(shí)?2、在運(yùn)用科學(xué)知識(shí)進(jìn)行實(shí)踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對(duì)自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉

(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長(zhǎng)的比值為2:7,某 天同一時(shí)刻測(cè)得一棟樓的影長(zhǎng)為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長(zhǎng)。

解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).

當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).

教學(xué)目標(biāo):1.會(huì)畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫的對(duì)不對(duì)?談?wù)勀愕目捶āM卣梗寒?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。

(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實(shí)驗(yàn)次數(shù)的不斷增加,頻率的變化趨勢(shì)如何?結(jié)論:從上面的試驗(yàn)可以看到:當(dāng)重復(fù)實(shí)驗(yàn)的次數(shù)大量增加時(shí),事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實(shí)驗(yàn),用一個(gè)事件發(fā)生的頻率來估計(jì)這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動(dòng)員投籃5次, 投中4次,能否說該運(yùn)動(dòng)員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計(jì)抽1件襯衣合格的概率是多少?(2)1998年,在美國(guó)密歇根州漢諾城市的一個(gè)農(nóng)場(chǎng)里出生了1頭白色的小奶牛,據(jù)統(tǒng)計(jì),平均出生1千萬頭牛才會(huì)有1頭是白色的,由此估計(jì)出生一頭奶牛為白色的概率為多少?

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近(精確到0.1);(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會(huì)接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動(dòng)過程,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力.通過動(dòng)手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.

故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

合探2 與同伴合作,兩個(gè)人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時(shí),∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個(gè)三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個(gè)三角形相似.這個(gè)定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點(diǎn),DE∥BC,AB= 7,AD=5,DE=10,求B C的長(zhǎng)。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個(gè)三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個(gè)銳角相等的兩個(gè)直角三角形是否相似?為什么?2.自己獨(dú)立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個(gè)定理.七、作業(yè):
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。