
(1)依照此規(guī)律,第20個(gè)圖形共有幾個(gè)五角星?(2)擺成第n個(gè)圖形需要幾個(gè)五角星?(3)擺成第2015個(gè)圖形需要幾個(gè)五角星?解析:通過觀察已知圖形可得:每個(gè)圖形都比其前一個(gè)圖形多3個(gè)五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個(gè)圖中,五角星有3個(gè)(3×1);第2個(gè)圖中,五角星有6個(gè)(3×2);第3個(gè)圖中,五角星有9個(gè)(3×3);第4個(gè)圖中,五角星有12個(gè)(3×4);∴第n個(gè)圖中有五角星3n個(gè).∴第20個(gè)圖中五角星有3×20=60個(gè).(2)擺成第n個(gè)圖形需要五角星3n個(gè).(3)擺成第2015個(gè)圖形需要6045個(gè)五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個(gè)值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個(gè)圖形需要3n個(gè)五角星.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、驗(yàn)證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過程,從中獲得數(shù)學(xué)知識(shí)與技能,體驗(yàn)教學(xué)活動(dòng)的方法,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.

方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個(gè)少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個(gè)外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個(gè)多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個(gè)外角,求邊數(shù)可直接利用外角和除以這個(gè)角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個(gè)多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個(gè)多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個(gè)多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.

三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再從中隨機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,每個(gè)轉(zhuǎn)盤都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實(shí)際問題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤(rùn),其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請(qǐng)你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).

四個(gè)不同類型的問題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫圖,利用圖象分析問題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過大.

解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對(duì)角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書設(shè)計(jì)1.邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等,簡(jiǎn)寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對(duì)“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練

AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個(gè)三角形全等,簡(jiǎn)寫成“邊角邊”或“SAS”.兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識(shí),從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對(duì)新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對(duì)“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會(huì)正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練

1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點(diǎn))2.能運(yùn)用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點(diǎn)) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動(dòng):學(xué)生先自主探究出答案,然后再與同學(xué)進(jìn)行交流.教師點(diǎn)撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點(diǎn)一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.

(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ))來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點(diǎn)二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號(hào)).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個(gè)條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計(jì)勾股定理的逆定理: 如果一個(gè)三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.

解:方法一:因?yàn)镈E∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因?yàn)镈F∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因?yàn)镈E∥BC,所以∠ADE=∠B.又因?yàn)镈F∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長(zhǎng),常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個(gè)三角形就成了解題的關(guān)鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設(shè)計(jì)(1)相似三角形的定義:三角分別相等、三邊成比例的兩個(gè)三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個(gè)三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗(yàn)事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動(dòng)手探究、歸納總結(jié)的能力.

合探2 與同伴合作,兩個(gè)人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時(shí),∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個(gè)三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個(gè)三角形相似.這個(gè)定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點(diǎn),DE∥BC,AB= 7,AD=5,DE=10,求B C的長(zhǎng)。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個(gè)三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個(gè)銳角相等的兩個(gè)直角三角形是否相似?為什么?2.自己獨(dú)立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個(gè)定理.七、作業(yè):

同理,圖③中,三角形的三邊長(zhǎng)分別為2,5,3;同理,圖④中,三角形的三邊長(zhǎng)分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個(gè)圖形中的三角形均為格點(diǎn)三角形,可以根據(jù)勾股定理求出各邊的長(zhǎng),然后根據(jù)三角形三邊的長(zhǎng)度是否成比例來判斷兩個(gè)三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長(zhǎng)按大小順序排列,然后分別計(jì)算他們對(duì)應(yīng)邊的比,最后由比值是否相等來確定兩個(gè)三角形是否相似.三、板書設(shè)計(jì)相似三角形的判定定理3:三邊成比例的兩個(gè)三角形相似.從學(xué)生已學(xué)的知識(shí)入手,通過設(shè)置問題,引導(dǎo)學(xué)生進(jìn)行計(jì)算、推理和歸納,提高分析問題和解決問題的能力.感受兩個(gè)三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會(huì)事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì).

(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對(duì)應(yīng)于相似三 角形的判定的判定定理1,SAS對(duì)應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對(duì)應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個(gè)三 角形相似.(三)例題學(xué)習(xí)例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個(gè)三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習(xí)四、小結(jié)本節(jié)學(xué) 習(xí)了相似三角形的判定定理3,使用時(shí)一定要注意它使用的條件.

解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運(yùn)算較繁瑣,且符號(hào)容易出錯(cuò),但如果逆用乘法對(duì)加法的分配律,則可使運(yùn)算簡(jiǎn)便.探究點(diǎn)三:有理數(shù)乘法的運(yùn)算律的實(shí)際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達(dá)中點(diǎn)?解析:把兩地間的距離看作單位“1”,中點(diǎn)即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達(dá)中點(diǎn).方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進(jìn)行簡(jiǎn)便計(jì)算.新課程理念要求把學(xué)生“學(xué)”數(shù)學(xué)放在教師“教”之前,“導(dǎo)學(xué)”是教學(xué)的重點(diǎn).因此,在本節(jié)課的教學(xué)中,不要直接將結(jié)論告訴學(xué)生,而是引導(dǎo)學(xué)生從大量的實(shí)例中尋找解決問題的規(guī)律.學(xué)生經(jīng)歷積極探索知識(shí)的形成過程,最后總結(jié)得出有理數(shù)乘法的運(yùn)算律.整個(gè)教學(xué)過程要讓學(xué)生積極參與,獨(dú)立思考和合作探究相結(jié)合,教師適當(dāng)點(diǎn)評(píng),以達(dá)到預(yù)期的教學(xué)效果.

解析:∵ab>0,根據(jù)“兩數(shù)相除,同號(hào)得正”可知,a、b同號(hào),又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點(diǎn)在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運(yùn)算,對(duì)學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計(jì)可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時(shí)也讓學(xué)生對(duì)比乘法法則和除法法則,加深印象.并講清楚除法的兩種運(yùn)算方法:(1)在除式的項(xiàng)和數(shù)字不復(fù)雜的情況下直接運(yùn)用除法法則求解.(2)在多個(gè)有理數(shù)進(jìn)行除法運(yùn)算,或者是乘、除混合運(yùn)算時(shí)應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運(yùn)算律解決問題.

1.掌握有理數(shù)混合運(yùn)算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算.2.在運(yùn)算過程中能合理地應(yīng)用運(yùn)算律簡(jiǎn)化運(yùn)算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運(yùn)算后,老師為了檢驗(yàn)同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計(jì)算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計(jì)算正確嗎?二、合作探究探究點(diǎn)一:有理數(shù)的混合運(yùn)算計(jì)算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運(yùn)算,運(yùn)算時(shí),一定要注意運(yùn)算順序,尤其是本題中的乘除運(yùn)算.要從左到右進(jìn)行計(jì)算;(2)題有大括號(hào)、中括號(hào),在運(yùn)算時(shí),可從里到外進(jìn)行.注意要靈活掌握運(yùn)算順序.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。