
方法總結:平行線與角的大小關系、直線的位置關系是緊密聯(lián)系在一起的.由兩直線平行的位置關系得到兩個相關角的數量關系,從而得到相應角的度數.探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構造同位角、內錯角或同旁內角,但是又要保證原有條件和結論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質),即∠B+∠BED+∠D=360°.方法總結:過一點作一條直線或線段的平行線是我們常作的輔助線.

四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數形結合方法的重要性.學生若出現解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數的表達式,在確定一次函數的表達式時可以用待定系數法,即先設出解析式,再根據題目條件(根據圖象、表格或具體問題)求出 , 的值,從而確定函數解析式。其步驟如下:(1)設函數表達式;(2)根據已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數學思想方法:數形結合、方程的思想.目的:引導學生小結本課的知識及數學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據學生情況適當增減,但難度不應過大.

小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據題意可得到兩個相等關系:(1)1元賀卡張數+2元賀卡張數=8(張);(2)1元賀卡錢數+2元賀卡錢數=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數,即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數學模型,學會逐步掌握基本的數學知識和方法,形成良好的數學思維習慣和應用意識,提高解決問題的能力,感受數學創(chuàng)造的樂趣,增進學好數學的信心,增加對數學較全面的體驗和理解.

方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.

目的:課后作業(yè)設計包括了兩個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數學問題本質的思考而設計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設計反思1.本節(jié)課的內容屬于選修學習的內容,主要突出對數學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結出解多元方程的基本方法.2.作為選修課,在內容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.

探究點二:三角形內角和定理的推論2如圖,P是△ABC內的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結:利用推論2證明角的大小時,兩個角應是同一個三角形的內角和外角.若不是,就需借助中間量轉化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內角利用已經學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.

意圖:(1)介紹與勾股定理有關的歷史,激發(fā)學生的愛國熱情;(2)學生加強了對數學史的了解,培養(yǎng)學習數學的興趣;(3)通過讓部分學生搜集材料,展示材料,既讓學生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數學的成就感到自豪.也有同學提出:當代中國數學成就不夠強,還應發(fā)奮努力.有同學能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內容:教師提問:通過這節(jié)課的學習,你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數形結合的思想方法;(2)教師了解學生對本節(jié)課的感受并進行總結;(3)培養(yǎng)學生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調動學生學習的積極性,所以學生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數形結合思想,學生對勾股定理的歷史的感悟及對勾股定理應用的認識等等.

解析:圖中∠AOB、∠COD均與∠BOC互余,根據角的和、差關系,可求得∠AOB與∠COD的度數.通過計算發(fā)現∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現:∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結:檢驗數學結論具體經歷的過程是:觀察、度量、實驗→猜想歸納→結論→推理→正確結論.三、板書設計為什么,要證明)推理的意義:數學結論必須經過嚴格的論證檢驗數學結論的常用方法實驗驗證舉出反例推理證明經歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結論產生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數學結論的常用方法:實驗驗證、舉出反例、推理論證等.

探究點二:勾股定理的簡單運用如圖,高速公路的同側有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結:解這類題的關鍵在于運用幾何知識正確找到符合條件的P點的位置,會構造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數形結合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數學解決實際問題的能力,為后面的學習打下基礎.

第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經》,可以在網上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。

解:設甲班的人數為x人,乙班的人數為y人,根據題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數為48人,乙班的人數為45人.方法總結:設未知數時,一般是求什么,設什么,并且所列方程的個數與未知數的個數相等.解這類問題的應用題,要抓住題中反映數量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數學問題情景,學生體會到數學中的“趣”;進一步強調數學與生活的聯(lián)系,突出顯示數學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數學學習的成功體驗,激發(fā)學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.

1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數字規(guī)律,提高推理能力.一、情境導入前面我們通過平方和立方運算求出一些特殊數的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結果為:9.449489743.方法總結:當被開方數不是一個數時,輸入時一定要按鍵.解本題時常出現的錯誤是:■6+7=SD,錯的原因是被開方數是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導致錯誤.K探究點二:利用科學計算器比較數的大小利用計算器,比較下列各組數的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結果為1.414213562.按鍵順序:SHIFT■5=,顯示結果為1.709975947.所以2<35.

探究點三:正比例函數的性質已知正比例函數y=-kx的圖象經過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。鍟O計1.函數與圖象之間是一一對應的關系;2.作一個函數的圖象的一般步驟:列表,描點,連線;3.正比例函數的圖象的性質:正比例函數的圖象是一條經過原點的直線.經歷函數圖象的作圖過程,初步了解作函數圖象的一般步驟:列表、描點、連線.已知函數的表達式作函數的圖象,培養(yǎng)學生數形結合的意識和能力.理解一次函數的表達式與圖象之間的一一對應關系.

四、教學設計反思這節(jié)內容是學生利用數形結合的思想去研究正比例函數的圖象,對函數與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數與圖象的對應關系應讓學生動手去實踐,去發(fā)現,對正比例函數的圖象是一條直線應讓學生自己得出.在得出結論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據學生狀況,教學設計也應做出相應的調整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數的代數形式是y=kx,那么,一個正比例函數對應的圖形具有什么特征呢?

方法總結:(1)若被開方數中含有負因數,則應先化成正因數,如(3)題.(2)將二次根式盡量化簡,使被開方數(式)中不含能開得盡方的因數(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數是否還有分母,是否還有能開得盡方的因數或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.

解:設正比例函數的表達式為y1=k1x,一次函數的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數的表達式為y2=118x-52.方法總結:根據圖象確定一次函數的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數法將兩點的橫、縱坐標代入所設表達式中求出待定系數,從而求出函數的表達式.【類型三】 根據實際問題確定一次函數的表達式某商店售貨時,在進價的基礎上加一定利潤,其數量x與售價y的關系如下表所示,請你根據表中所提供的信息,列出售價y(元)與數量x(千克)的函數關系式,并求出當數量是2.5千克時的售價.

意圖:課后作業(yè)設計包括了三個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設計,通過此題可讓學生進一步認識勾股定理的前提條件.效果:學生進一步加強對本課知識的理解和掌握.教學設計反思(一)設計理念依據“學生是學習的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結合的方式進行主動學習.教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學生在學習過程中自我發(fā)現勾股定理,本節(jié)課首先情景創(chuàng)設激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數據,發(fā)現直角三角形三邊的關系,進而得到勾股定理.

(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結:本題是反映數據集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數、方差的角度來考慮,在平均數相同的情況下,方差越小的越穩(wěn)定.三、板書設計數據的離散程度極差:一組數據中最大數據與最小數據的差方差:各個數據與平均數差的平方的平均數 s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經歷表示數據離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數學與生活的密切聯(lián)系.

方法總結:利用三角形三邊的數量關系來判定直角三角形,從而推出兩線的垂直關系.探究點二:勾股數下列幾組數中是勾股數的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數的定義,不是勾股數;第③④組不是正整數,不是勾股數;只有第②組的9,40,41是勾股數.故填②.方法總結:判斷勾股數的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數.三、板書設計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數:滿足a2+b2=c2的三個正整數,稱為勾股數.經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力、歸納能力.體驗生活中數學的應用價值,感受數學與人類生活的密切聯(lián)系,激發(fā)學生學數學、用數學的興趣.

T:Teachers do much work for students. So we should love our teachers. Let’s say something to our teachers.I want to say to the teachers:_______________________________.⑵布置家庭作業(yè)。作業(yè)1為閱讀訓練兩例,可以進一步鞏固提高閱讀理解能力。作業(yè)2為課后用所學語言知識討論本班教師,可以讓學生將所學語言用于實際生活中,提高語言交際能力。①完成下列閱讀理解。(A)判斷正誤,正確的寫“T”,錯誤的寫“F”。I am Ann. I am in Grade Five. Mrs. Heart is our princiPal. She’s fifty. She’s strict, but she is kind. Mr. Liu is my new teacher. He’s a university student. He’s tall and strong. He’s a basketball player. He’s my new P.E. teacher.() 1. Ann is a P.E. teacher.() 2. Mrs. Heart is old.() 3. Mr. Liu is young.() 4. Mrs. Heart is a basketball player.() 5. My P.E. teacher is strict.(B)閱讀理解,選出正確答案。Tom is an American boy. He’s thirteen years old. He’s very tall and strong. He likes reading comic books. He likes playing basketball, too. He is good at math and music. He has a lot of friends at school. They often chat (聊天) with each other on the Internet (網上). Tomorrow is Tom’s birthday. His mother buys a lot of food for him. His classmates bring him lots of wonderful things. They are going to have a birthday Party at school.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。