
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個籃球。一天課外活動,有3個班級分別計劃借籃球總數(shù)的 , 和 。請你算一算,這60個籃球夠借嗎?如果夠了,還多幾個籃球?如果不夠,還缺幾個?解:=60-30-20-15 =-5答:不夠借,還缺5個籃球。練習鞏固:第41頁1、2、7、探究活動 (1)如果2個數(shù)的積為負數(shù),那么這2個數(shù)中有幾個負數(shù)?如果3個數(shù)的積為負數(shù),那么這3個數(shù)中有幾個負數(shù)?4個數(shù)呢?5個數(shù)呢?6個數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計算(三)課堂小結(jié)通過本節(jié)課的學習,大家學會了什么?本節(jié)課我們探討了有理數(shù)乘法的運算律及其應(yīng)用.乘法的運算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運算中,靈活運用運算律可以簡化運算.(四)作業(yè):課本42頁作業(yè)題

解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學生“學”數(shù)學放在教師“教”之前,“導學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結(jié)論告訴學生,而是引導學生從大量的實例中尋找解決問題的規(guī)律.學生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結(jié)合,教師適當點評,以達到預(yù)期的教學效果.

解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內(nèi)容有比較好的作用.教學設(shè)計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結(jié)除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數(shù)字不復雜的情況下直接運用除法法則求解.(2)在多個有理數(shù)進行除法運算,或者是乘、除混合運算時應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運算律解決問題.

(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據(jù)學生情況和上課情況適當調(diào)整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學習了一次函數(shù)圖象的應(yīng)用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.

方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學中還應(yīng)注意尊重學生的個體差異,使每個學生都學有所獲.

解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應(yīng)用意識.

學習目標1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;

解:設(shè)正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設(shè)表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當數(shù)量是2.5千克時的售價.

四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學思想方法:數(shù)形結(jié)合、方程的思想.目的:引導學生小結(jié)本課的知識及數(shù)學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據(jù)學生情況適當增減,但難度不應(yīng)過大.

探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設(shè)計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設(shè)計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

精讀課文,理解積累 1、同學們的字記的很好,課文也一定能讀出感情來?,F(xiàn)在就請同學們帶著自己的理解和感受,有感情地讀一遍課文,并自己喜歡的一段精讀?! ?、討論交流,指導朗讀 調(diào)整方案: 方案一:通過讀文你知道了什么?(這一問題較開放,如果學生已從整體上感知課文內(nèi)容,即可進入下一環(huán)節(jié)。如果學生回答只停留在零散的詞句上,就按方案二教學。) 方案二:小燕子、麻雀和黃鶯它們分別認為春雨是什么色的?他們?yōu)槭裁催@么認為?(板貼寫有字的小寫圖片和對應(yīng)的顏色) 3、小組內(nèi)討論:a.如果分角色朗讀的話,該怎樣讀爭論的語法,朗讀好“不對”“不對,不對”“你們瞧”b.怎樣表現(xiàn)春雨小鳥和大自然?! ?、根據(jù)自己的理解感受小組內(nèi)分角色讀、表演讀?! ?、請一組同學配樂表演讀,學生評價 6、同學們春雨到底是什么顏色的呢?把你的想法說一說,畫一畫(自選粉筆板畫春雨) 7、指導積累。同學們讀得真有感情,現(xiàn)在請把你喜歡的詞句畫下來。

1.教學內(nèi)容:本課是北師大版第三單元《分數(shù)》:《找最小公倍數(shù)》第一課時。是引導學生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認識并建立并理解公倍數(shù)和最小公倍數(shù)的概念的過程。并總結(jié)歸納出一些找最小公倍數(shù)的方法。2.教材編寫意圖:五年級學生的生活經(jīng)驗和知識背景比較豐富,新課程標準要求教材選擇具有現(xiàn)實性和趣味性的素材,采取螺旋上升的方式,由淺入深地促使學生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。在此之前,學生已經(jīng)了解了整除、倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)。通過寫出幾個數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個,從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出兩個數(shù)的倍數(shù),以及這兩個數(shù)公有的倍數(shù),這一內(nèi)容的學習也為今后的通分、約分學習打下的基礎(chǔ),具有科學的、嚴密的邏輯性。(二)對教材的處理意見1.教材中讓學生找4和6的倍數(shù),進而引出公倍數(shù)和最小公倍數(shù)的概念,利于學生建立對概念的理解。

3、情感態(tài)度與價值觀:培養(yǎng)學生的觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心。(三)教學重難點根據(jù)以上分析,結(jié)合本節(jié)課的教學內(nèi)容和學生的思維特點,我將本節(jié)課的教學重點確立為引導學生認識倍數(shù)與因數(shù),能在1——100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù)。而將探索出找一個數(shù)的倍數(shù)的方法確定為本節(jié)課的教學難點。二、說學情五年級的學生觀察、分析、概括歸納能力已經(jīng)逐步形成,他們愿意自己觀察、分析、概括整理,找出規(guī)律。他們在探索新知識上,主動性比較強,同時他們思維活躍,已具備了一定的探究能力和小組合作意識。并且學生在學習本節(jié)課之前,學生學過整數(shù)的認識,能熟練運用乘除法運算法則解決相應(yīng)的乘除法運算,是本節(jié)課學習倍數(shù)與因數(shù)相關(guān)內(nèi)容的基礎(chǔ)。

一、說教材1、教材內(nèi)容:本節(jié)是新北師大版教材六年級數(shù)學上冊第二單元第二課的內(nèi)容。2、教材分析:本課是一節(jié)計算與解決問題相結(jié)合的課,是在學生學會分數(shù)混合運算的運算順序基礎(chǔ)上學習的,是對整數(shù)乘法運算定律的推廣,也是在學生學會簡單的“求一個數(shù)的幾分之幾是多少?”的分數(shù)乘法問題以及簡單兩步計算問題基礎(chǔ)上,進一步學習的較復雜“求比一個數(shù)多(或少)幾分之幾的數(shù)是多少?”的分數(shù)乘法問題,是后續(xù)學習整、小、分數(shù)混合運算及其簡便運算,學習復雜分數(shù)應(yīng)用問題的基礎(chǔ)。3、學情分析:本課是在學習完分數(shù)混合運算(一)之后學習,學生已經(jīng)有一定的基礎(chǔ)。4、學習目標:(1)、通過解決“成交量”的問題,呈現(xiàn)不同解題策略,理解“求比一個數(shù)多幾分之一的數(shù)是多少?”這類問題的數(shù)量關(guān)系,并學會解決方法。(2)、通過畫圖正確理解題意,分析數(shù)量關(guān)系,尤其是幫助理解“1+1/5”的含義。進一步體會畫圖是一種分析問題、解決問題的重要策略。

教材首先呈現(xiàn)了一個實際問題,并增加了一個估算的要求,讓學生先估一估再計算。接著教材中通過線段圖幫助學生理解題意,引導學生思考“比八月份節(jié)約了”是什么意思?在線段圖中,隱含著題目中最基本的等量關(guān)系,然后引導學生根據(jù)等量關(guān)系列方程解答,最后驗證估算的結(jié)果。在開展教學時,注意下面幾個方面。一是估算意識的培養(yǎng)。結(jié)合具體情境發(fā)展學生的估算意識和能力是《新課程標準》中強調(diào)的,分數(shù)中的估算要比整數(shù)、小數(shù)的估算難把握一些,教學時,讓學生結(jié)合問題情境進行估算,關(guān)鍵是讓學生體會估算要有依據(jù)。二是解決問題策略的研究。教學時,可以讓師生交流畫圖,試著分析數(shù)量間的關(guān)系。根據(jù)等量關(guān)系列出方程,解決問題。接著進行變式練習,把題目中的“比八月份節(jié)約了”改寫成“比八月份增加了”,目的是讓學生進一步利用知識解決相關(guān)數(shù)學問題,讓學生再次利用圖找出等量關(guān)系。三是注重對估算結(jié)果進行驗證。

教學內(nèi)容從結(jié)繩計數(shù)說起教學目標1、讓學生讀懂教材中呈現(xiàn)的材料,介紹記數(shù)的演變過程。2、滲透數(shù)學的文化教育,使學生了解我國古代勞動人民的偉大創(chuàng)舉。教學重點讓學生讀懂教材中呈現(xiàn)的材料,介紹記數(shù)的演變過程。教學難點讓學生讀懂教材中呈現(xiàn)的材料,介紹記數(shù)的演變過程。教學準備掛圖教學流程一、創(chuàng)設(shè)情境,導入新課。1、師:你知道古時候我們是怎樣計數(shù)的嗎?這節(jié)課我們來了解記數(shù)的演變過程“從結(jié)繩記數(shù)”說起。2、看到了這個課題,你想到了什么?你想知道什么?二、學習新知。1、請學生閱讀書本上的有關(guān)知識,然后在小組內(nèi)交流。2、交流:(1)在遠古時代,為了記下獵物的多少,人們用石子計數(shù)或結(jié)繩記數(shù)。是一一對應(yīng)的。

今天我說課的內(nèi)容是:小學二年級數(shù)學上冊第五單元“2—5的乘法口訣”的第5課時《回家路上》。本節(jié)課是在已有知識與經(jīng)驗的基礎(chǔ)上,讓學生進一步體驗乘法,掌握“用2-5的乘法口訣解決問題”,意在培養(yǎng)學生建立、運用數(shù)學模型來解決相關(guān)問題能力,從而讓他們感受到數(shù)學知識與生活實際的聯(lián)系。基于以上教學內(nèi)容,我作了如下的教學設(shè)計:本節(jié)課是在完成了“2---5的乘法口訣”的基礎(chǔ)上,使學生學會“用2-5的乘法口訣”解決問題。以回家路上作為主要線索,并通過以下活動實現(xiàn)教學目標。1、創(chuàng)設(shè)“回家路上”的問題情境,引導學生提出本節(jié)課的一些數(shù)學問題。2、通過自主探究,引導學生建立“用乘法口訣解決問題”的數(shù)學模型。3、運用所建模型,解決相關(guān)問題,并通過練習,讓學生感受數(shù)學簡捷思維的優(yōu)勢和廣泛應(yīng)用的價值。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。