提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教A版高中數(shù)學(xué)必修一用二分法求方程的近似解教學(xué)設(shè)計(jì)(2)

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.2《雙曲線(xiàn)》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:2.2《雙曲線(xiàn)》教學(xué)設(shè)計(jì)

    教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 知識(shí)與技能掌握雙曲線(xiàn)的定義,掌握雙曲線(xiàn)的四種標(biāo)準(zhǔn)方程形式及其對(duì)應(yīng)的焦點(diǎn)、準(zhǔn)線(xiàn).過(guò)程與方法掌握對(duì)雙曲線(xiàn)標(biāo)準(zhǔn)方程的推導(dǎo),進(jìn)一步理解求曲線(xiàn)方程的方法——坐標(biāo)法.通過(guò)本節(jié)課的學(xué)習(xí),提高學(xué)生觀(guān)察、類(lèi)比、分析和概括的能力.情感、態(tài)度與價(jià)值觀(guān)通過(guò)本節(jié)的學(xué)習(xí),體驗(yàn)研究解析幾何的基本思想,感受圓錐曲線(xiàn)在刻畫(huà)現(xiàn)實(shí)和解決實(shí)際問(wèn)題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.2. 教學(xué)重點(diǎn)/難點(diǎn) 教學(xué)重點(diǎn)雙曲線(xiàn)的定義及焦點(diǎn)及雙曲線(xiàn)標(biāo)準(zhǔn)方程.教學(xué)難點(diǎn)在推導(dǎo)雙曲線(xiàn)標(biāo)準(zhǔn)方程的過(guò)程中,如何選擇適當(dāng)?shù)淖鴺?biāo)系. 3. 教學(xué)用具 多媒體4. 標(biāo)簽

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.4《圓》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.4《圓》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)直線(xiàn)與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無(wú)交點(diǎn); (2)相切:僅有一個(gè)交點(diǎn); (3)相交:有兩個(gè)交點(diǎn). 并且知道,直線(xiàn)與圓的位置關(guān)系,可以由圓心到直線(xiàn)的距離d與半徑r的關(guān)系來(lái)判別(如圖8-22): (1):直線(xiàn)與圓相離; (2):直線(xiàn)與圓相切; (3):直線(xiàn)與圓相交. 介紹 講解 說(shuō)明 質(zhì)疑 引導(dǎo) 分析 了解 思考 思考 帶領(lǐng) 學(xué)生 分析 啟發(fā) 學(xué)生思考 0 15*動(dòng)腦思考 探索新知 【新知識(shí)】 設(shè)圓的標(biāo)準(zhǔn)方程為 , 則圓心C(a,b)到直線(xiàn)的距離為 . 比較d與r的大小,就可以判斷直線(xiàn)與圓的位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學(xué)生 分析 30*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例6 判斷下列各直線(xiàn)與圓的位置關(guān)系: ⑴直線(xiàn), 圓; ⑵直線(xiàn),圓. 解 ⑴ 由方程知,圓C的半徑,圓心為. 圓心C到直線(xiàn)的距離為 , 由于,故直線(xiàn)與圓相交. ⑵ 將方程化成圓的標(biāo)準(zhǔn)方程,得 . 因此,圓心為,半徑.圓心C到直線(xiàn)的距離為 , 即由于,所以直線(xiàn)與圓相交. 【想一想】 你是否可以找到判斷直線(xiàn)與圓的位置關(guān)系的其他方法? *例7 過(guò)點(diǎn)作圓的切線(xiàn),試求切線(xiàn)方程. 分析 求切線(xiàn)方程的關(guān)鍵是求出切線(xiàn)的斜率.可以利用原點(diǎn)到切線(xiàn)的距離等于半徑的條件來(lái)確定. 解 設(shè)所求切線(xiàn)的斜率為,則切線(xiàn)方程為 , 即 . 圓的標(biāo)準(zhǔn)方程為 , 所以圓心,半徑. 圖8-23 圓心到切線(xiàn)的距離為 , 由于圓心到切線(xiàn)的距離與半徑相等,所以 , 解得 . 故所求切線(xiàn)方程(如圖8-23)為 , 即 或. 說(shuō)明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問(wèn)題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線(xiàn)垂直于過(guò)切點(diǎn)的半徑”的幾何性質(zhì)求出切線(xiàn)方程? 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 講解 說(shuō)明 觀(guān)察 思考 主動(dòng) 求解 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 注意 觀(guān)察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 50

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.1《橢圓》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:2.1《橢圓》優(yōu)秀教學(xué)設(shè)計(jì)

    本人所教的兩個(gè)班級(jí)學(xué)生普遍存在著數(shù)學(xué)科基礎(chǔ)知識(shí)較為薄弱,計(jì)算能力較差,綜合能力不強(qiáng),對(duì)數(shù)學(xué)學(xué)習(xí)有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識(shí)到自己的不足,對(duì)數(shù)學(xué)課的學(xué)習(xí)興趣高,積極性強(qiáng)。 學(xué)生在學(xué)習(xí)交往上表現(xiàn)為個(gè)別化學(xué)習(xí),課堂上較為依賴(lài)?yán)蠋煹囊龑?dǎo)。學(xué)生的群體性小組交流能力與協(xié)同討論學(xué)習(xí)的能力不強(qiáng),對(duì)學(xué)習(xí)資源和知識(shí)信息的獲取、加工、處理和綜合的能力較低。在教學(xué)中盡量分析細(xì)致,減少跨度較大的環(huán)節(jié),對(duì)重要的推導(dǎo)過(guò)程采用板書(shū)方式逐步進(jìn)行,力求讓絕大多數(shù)學(xué)生接受。 1.理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo);掌握橢圓的標(biāo)準(zhǔn)方程;會(huì)根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程,會(huì)根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點(diǎn)坐標(biāo). 2.通過(guò)橢圓圖形的研究和標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫(huà)出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用。 1.讓學(xué)生經(jīng)歷橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,進(jìn)一步掌握求曲線(xiàn)方程的一般方法,體會(huì)數(shù)形結(jié)合等數(shù)學(xué)思想;培養(yǎng)學(xué)生運(yùn)用類(lèi)比、聯(lián)想等方法提出問(wèn)題. 2.培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,進(jìn)一步掌握利用方程研究曲線(xiàn)的基本方法,通過(guò)與橢圓幾何性質(zhì)的對(duì)比來(lái)提高學(xué)生聯(lián)想、類(lèi)比、歸納的能力,解決一些實(shí)際問(wèn)題。 1.通過(guò)具體的情境感知研究橢圓標(biāo)準(zhǔn)方程的必要性和實(shí)際意義;體會(huì)數(shù)學(xué)的對(duì)稱(chēng)美、簡(jiǎn)潔美,培養(yǎng)學(xué)生的審美情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度. 2.進(jìn)一步理解并掌握代數(shù)知識(shí)在解析幾何運(yùn)算中的作用,提高解方程組和計(jì)算能力,通過(guò)“數(shù)”研究“形”,說(shuō)明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過(guò)“數(shù)”的變化研究“形”的本質(zhì)。幫助學(xué)生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)列方程解應(yīng)用題說(shuō)課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)列方程解應(yīng)用題說(shuō)課稿

    這節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)教科書(shū)數(shù)學(xué)第九冊(cè),P117——P119頁(yè)復(fù)習(xí)、例1、例2、解方程的一般步驟、想一想、做一做及P120頁(yè)T1-4。教學(xué)目的有以下三點(diǎn):1、使學(xué)生掌握列方程解兩步應(yīng)用題的方法。2、總結(jié)列方程解應(yīng)用題的一般步驟。3、培養(yǎng)學(xué)生分析數(shù)量關(guān)系的能力,提高學(xué)生在列方程解應(yīng)用題時(shí)分析等理關(guān)系的能力。教學(xué)重點(diǎn):分析應(yīng)用題里的等量關(guān)系,會(huì)列方程解應(yīng)用題。教學(xué)難點(diǎn):分析應(yīng)用題里的等量關(guān)系。教具準(zhǔn)備:小黑板、寫(xiě)好題目的紙條等。這節(jié)課在學(xué)生已有的解方程、分析應(yīng)用題數(shù)量關(guān)系等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué),使學(xué)生掌握列方程解應(yīng)用題的方法,為以后學(xué)習(xí)更深入的知識(shí)打下基礎(chǔ),同時(shí)培養(yǎng)學(xué)生積極思考問(wèn)題,熱愛(ài)自然科學(xué)的品質(zhì)。

  • 好玩的磁鐵教案教學(xué)設(shè)計(jì)

    好玩的磁鐵教案教學(xué)設(shè)計(jì)

    中班的幼兒開(kāi)始愿意探究新異的事物或現(xiàn)象來(lái)滿(mǎn)足自己的好奇心,所以,我們的科學(xué)活動(dòng)設(shè)計(jì)要在淺顯易懂,適合中班幼兒年齡特征的同時(shí),引發(fā)幼兒對(duì)科學(xué)的初步探究能力。中班的幼兒已經(jīng)具有注意到新異事物或現(xiàn)象的,因此,我們?cè)谠O(shè)計(jì)科學(xué)活動(dòng)時(shí)要讓幼兒充分發(fā)揮想象,對(duì)磁鐵這種“新異”事物提出問(wèn)題,如什么是磁鐵?什么時(shí)候看見(jiàn)過(guò)磁鐵?等等類(lèi)似的問(wèn)題,可以增強(qiáng)幼兒的探索興趣,提高幼兒的探索的積極性,有利于激發(fā)幼兒的想象力。  中班幼兒主要以具體形象為主,需要具體的活動(dòng)場(chǎng)景和活動(dòng)形式,所以活動(dòng)設(shè)計(jì)要提供幼兒合適的情景以提供操作思考的機(jī)會(huì),進(jìn)一步發(fā)展幼兒的自主性和主動(dòng)性。中班幼兒與小班幼兒相比,活動(dòng)時(shí)間也有所增加,因此也需要在活動(dòng)時(shí)間上給予一定的保證。

  • 圖形的全等教案教學(xué)設(shè)計(jì)

    圖形的全等教案教學(xué)設(shè)計(jì)

    教法分析:在新課程的教學(xué)中教師要向?qū)W生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),倡導(dǎo)讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程,鼓勵(lì)學(xué)生自主探索與合作交流,讓學(xué)生在實(shí)踐中體驗(yàn)、學(xué)習(xí)。因此,本節(jié)課我采用了多媒體輔助教學(xué)與學(xué)生動(dòng)手操作、觀(guān)察、討論的方式,一方面能夠直觀(guān)、生動(dòng)地反映各種圖形的特征,增加課堂的容量,吸引學(xué)生注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面也有利于突出重點(diǎn)、突破難點(diǎn),更好地提高課堂效率。學(xué)法分析:初二年級(jí)學(xué)習(xí)對(duì)新事物比較敏感,通過(guò)新課程教學(xué)的實(shí)施,學(xué)生已具有一定探索學(xué)習(xí)與合作交流的習(xí)慣。但是一下子要學(xué)生從直觀(guān)的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導(dǎo)學(xué)生:一要善于觀(guān)察發(fā)現(xiàn);二要勇于探索、動(dòng)手實(shí)驗(yàn);三要把自己的所思所想大膽地進(jìn)行交流,從而得出正確的結(jié)論,并掌握知識(shí)。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋(píng)果,小王從中任意選取了10個(gè)蘋(píng)果,編上號(hào)并稱(chēng)出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋(píng)果編號(hào)12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋(píng)果的平均質(zhì)量及蘋(píng)果的大小是否均勻. 介紹 質(zhì)疑 講解 說(shuō)明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 在統(tǒng)計(jì)中,所研究對(duì)象的全體叫做總體,組成總體的每個(gè)對(duì)象叫做個(gè)體. 上面的實(shí)驗(yàn)中,這批蘋(píng)果的質(zhì)量是研究對(duì)象的總體,每個(gè)蘋(píng)果的質(zhì)量是研究的個(gè)體. 講解 說(shuō)明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績(jī),指出其中的總體與個(gè)體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績(jī)是總體,每一個(gè)學(xué)生的數(shù)學(xué)期末考試成績(jī)是個(gè)體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來(lái)衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個(gè)體. 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 觀(guān)察 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 35

  • 角平分線(xiàn)的性質(zhì)教案教學(xué)設(shè)計(jì)

    角平分線(xiàn)的性質(zhì)教案教學(xué)設(shè)計(jì)

    這是本節(jié)課的重點(diǎn)。讓同學(xué)們將∠aob對(duì)折,再折出一個(gè)直角三角形(使第一條折痕為斜邊),然后展開(kāi),請(qǐng)同學(xué)們觀(guān)察并思考:后折疊的二條折痕的交點(diǎn)在什么地方?這兩條折痕與角的兩邊有什么位置關(guān)系?這兩條折痕在數(shù)量上有什么關(guān)系?這時(shí)有的同學(xué)會(huì)說(shuō):“角的平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等”.即得到了角平分線(xiàn)的性質(zhì)定理的猜想。接著我會(huì)讓同學(xué)們理論證明,并轉(zhuǎn)化為符號(hào)語(yǔ)言,注意分清題設(shè)和結(jié)論。有的同學(xué)會(huì)用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線(xiàn)的性質(zhì)定理。

  • 有理數(shù)復(fù)習(xí)教案教學(xué)設(shè)計(jì)

    有理數(shù)復(fù)習(xí)教案教學(xué)設(shè)計(jì)

    3)乘除運(yùn)算①有理數(shù)的乘法法則:(老師給出,學(xué)生一起朗讀)1. 兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;2. 任何數(shù)與零相乘都得零;3. 幾個(gè)不等于零的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)數(shù),積為負(fù);當(dāng)負(fù)因數(shù)的個(gè)數(shù)為偶數(shù)個(gè)時(shí),積為正;4. 幾個(gè)有理數(shù)相乘,若其中有一個(gè)為零,積就為零。②有理數(shù)的除法法則:(老師提問(wèn),學(xué)生回答)1. 兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除;2. 除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。③關(guān)系(老師給出)除法轉(zhuǎn)化為乘法進(jìn)行運(yùn)算。

  • 反比例函數(shù)教案教學(xué)設(shè)計(jì)

    反比例函數(shù)教案教學(xué)設(shè)計(jì)

    本節(jié)的內(nèi)容主要是反比例函數(shù)的概念教學(xué).反比例函數(shù)概念的建立,不能從形式上進(jìn)行簡(jiǎn)單的抽象與概括,而是對(duì)這些實(shí)例從不同角度抽象出本質(zhì)屬性后,再進(jìn)行概括。教材設(shè)計(jì)的基本思路是從現(xiàn)實(shí)生活中大量的反比例關(guān)系中抽象出反比例函數(shù)概念,讓學(xué)生進(jìn)一步感受函數(shù)是反映現(xiàn)實(shí)世界中變量關(guān)系的一種有效數(shù)學(xué)模型,逐步從對(duì)具體反比例函數(shù)的感性認(rèn)識(shí)上升到對(duì)抽象的反比例函數(shù)概念的理性認(rèn)識(shí). 同時(shí)本節(jié)的學(xué)習(xí)內(nèi)容,直接關(guān)系到本章后續(xù)內(nèi)容的學(xué)習(xí),也是繼續(xù)學(xué)習(xí)其它各類(lèi)函數(shù)的基礎(chǔ),其中蘊(yùn)涵的類(lèi)比、歸納、對(duì)應(yīng)和函數(shù)的數(shù)學(xué)思想方法,對(duì)學(xué)生今后研究問(wèn)題、解決問(wèn)題以及終身的發(fā)展都是非常有益的.基于以上分析,本節(jié)教學(xué)設(shè)計(jì)是建立在一個(gè)個(gè)數(shù)學(xué)活動(dòng)的基礎(chǔ)上,經(jīng)過(guò)對(duì)情境理解、本質(zhì)抽象的積累而形成的.讓學(xué)生對(duì)一類(lèi)問(wèn)題情境中兩個(gè)變量間的關(guān)系,在充分經(jīng)歷寫(xiě)表達(dá)式,計(jì)算函數(shù)值和觀(guān)察函數(shù)值隨自變量變化規(guī)律的過(guò)程中,逐步概括形成反比例函數(shù)的概念.針對(duì)教學(xué)實(shí)際,我選取了貼學(xué)生現(xiàn)實(shí)的,有價(jià)值的實(shí)例“文具店里買(mǎi)學(xué)習(xí)用品”和“剪面積為定值的長(zhǎng)方形紙片”等作為問(wèn)題情境.

  • 北師大版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)《方程》說(shuō)課稿2篇

    北師大版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)《方程》說(shuō)課稿2篇

    3、變換角度,深入思考第三幅情境圖隱含著多樣的等量關(guān)系,也正是引發(fā)學(xué)生數(shù)學(xué)思考的最佳情境。根據(jù)學(xué)生認(rèn)識(shí)的深入程度,可適當(dāng)讓學(xué)生體會(huì)到等式的“值等”和“意等”,并放手讓學(xué)生探究,根據(jù)不同的認(rèn)識(shí)找到不同的等量關(guān)系,列出等量關(guān)系不同的同解方程。在教學(xué)中,先引導(dǎo)孩子發(fā)現(xiàn)情境中的基本相等關(guān)系:2瓶水的水量+一杯水的水量=一壺水的水量,并且列出等式2z+200=2000,在此基礎(chǔ)上,再引導(dǎo)孩子發(fā)現(xiàn)其他的等量關(guān)系。在這一過(guò)程中,充分激發(fā)孩子探求知識(shí)的欲望,調(diào)動(dòng)孩子思考的主動(dòng)性和靈活性,從而找到多樣化的等量關(guān)系,并進(jìn)一步提高孩子解決數(shù)學(xué)問(wèn)題的能力。4、建立概念,判斷鞏固在前面教學(xué)的基礎(chǔ)上總結(jié)、抽象出方程的含義。通過(guò)三道例題的簡(jiǎn)潔數(shù)學(xué)式子表達(dá),讓小組合作尋找他們的共同特點(diǎn),從而建立方程的概念?!昂形粗獢?shù)”與“等式”是方程概念的兩點(diǎn)最重要的內(nèi)涵。并通過(guò)“練一練”讓學(xué)生直接找出方程。

  • 利用計(jì)算器進(jìn)行有理數(shù)的計(jì)算教案教學(xué)設(shè)計(jì)

    利用計(jì)算器進(jìn)行有理數(shù)的計(jì)算教案教學(xué)設(shè)計(jì)

    計(jì)算器的面板是由鍵盤(pán)和顯示器組成的。顯示器是用來(lái)顯示輸入的數(shù)據(jù)和計(jì)算結(jié)果的裝置。顯示器因計(jì)算器的種類(lèi)不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤(pán)的每個(gè)鍵上,都標(biāo)明了這個(gè)鍵的功能。我們看鍵盤(pán)上標(biāo)有的鍵,是開(kāi)機(jī)鍵,在開(kāi)始使用計(jì)算器時(shí)先要按一下這個(gè)鍵,以接通電源,計(jì)算器的電源一般用5號(hào)電池或鈕扣電池。再看鍵,是關(guān)機(jī)鍵,停止使用計(jì)算器時(shí)要按一下這個(gè)鍵,來(lái)切斷計(jì)算器的電源,是清除鍵,按一下這個(gè)鍵,計(jì)算器就清除當(dāng)前顯示的數(shù)與符號(hào)。的功能是完成運(yùn)算或執(zhí)行命令。是運(yùn)算鍵,按一下這個(gè)鍵,計(jì)算器就執(zhí)行加法運(yùn)算。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

    課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱(chēng)§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線(xiàn)、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀(guān)圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線(xiàn)、面之間的關(guān)系;會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀(guān)圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過(guò)渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫(huà),動(dòng)腦想,但立體幾何的語(yǔ)言及想象能力差

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.4 用樣本估計(jì)總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 初中我們?cè)?jīng)學(xué)習(xí)過(guò)頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個(gè)組內(nèi)的個(gè)數(shù). 【知識(shí)鞏固】 例1 某工廠(chǎng)從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機(jī)抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點(diǎn),將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點(diǎn)數(shù)值時(shí)需要考慮分點(diǎn)值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計(jì)頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計(jì)3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說(shuō)明 了解 觀(guān)察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 各組內(nèi)數(shù)據(jù)的個(gè)數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個(gè)數(shù)之比叫做該組的頻率. 計(jì)算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計(jì)301.000 根據(jù)頻率分布表,可以畫(huà)出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對(duì)應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識(shí)】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測(cè),去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀(guān)地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計(jì)總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計(jì)是比較可信的. 如上所述,用樣本的頻率分布估計(jì)總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計(jì)算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點(diǎn)并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀(guān)察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計(jì)總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 觀(guān)察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 新人教版高中英語(yǔ)選修2Unit 2 Bridging Cultures-Discovering useful structures教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)選修2Unit 2 Bridging Cultures-Discovering useful structures教學(xué)設(shè)計(jì)

    The grammar of this unit is designed to review noun clauses. Sentences that use nouns in a sentence are called noun clauses. Nominal clauses can act as subject, object, predicate, appositive and other components in compound sentences. According to the above-mentioned different grammatical functions, nominal clauses are divided into subject clause, object clause, predicate clause and appositive clause. In this unit, we will review the three kinds of nominal clauses. Appositive clauses are not required to be mastered in the optional compulsory stage, so they are not involved.1. Guide the students to judge the compound sentences and determine the composition of the clauses in the sentence.2. Instruct students to try to learn grammar by generalizing grammar rules, controlling written practice, and semi-open oral output.3. Inspire the students to systematize the function and usage of noun clause1.Instruct students to try to learn grammar by generalizing grammar rules, controlling written practice, and semi-open oral output.2.Inspire the students to systematize the function and usage of noun clauseStep1: The teacher ask studetns to find out more nominal clauses from the reading passage and udnerline the nominal clauses.

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    一、定義:  ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開(kāi)式;上述二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),用表示;叫做二項(xiàng)展開(kāi)式的通項(xiàng)公式.二、二項(xiàng)展開(kāi)式的特點(diǎn)與功能1. 二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開(kāi)式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開(kāi)式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開(kāi)式的功能注意到二項(xiàng)展開(kāi)式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開(kāi)式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問(wèn)題的原始依據(jù).又注意到在的二項(xiàng)展開(kāi)式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見(jiàn)展開(kāi)式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問(wèn)題,二項(xiàng)式公式也是不可或缺的理論依據(jù).

  • 新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Discovering useful structures教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Discovering useful structures教學(xué)設(shè)計(jì)

    The grammatical structure of this unit is predicative clause. Like object clause and subject clause, predicative clause is one of Nominal Clauses. The leading words of predicative clauses are that, what, how, what, where, as if, because, etc.The design of teaching activities aims to guide students to perceive the structural features of predicative clauses and think about their ideographic functions. Beyond that, students should be guided to use this grammar in the context apporpriately and flexibly.1. Enable the Ss to master the usage of the predicative clauses in this unit.2. Enable the Ss to use the predicative patterns flexibly.3. Train the Ss to apply some skills by doing the relevant exercises.1.Guide students to perceive the structural features of predicative clauses and think about their ideographic functions.2.Strengthen students' ability of using predicative clauses in context, but also cultivate their ability of text analysis and logical reasoning competence.Step1: Underline all the examples in the reading passage, where noun clauses are used as the predicative. Then state their meaning and functions.1) One theory was that bad air caused the disease.2) Another theory was that cholera was caused by an infection from germs in food or water.3) The truth was that the water from the Broad Street had been infected by waste.Sum up the rules of grammar:1. 以上黑體部分在句中作表語(yǔ)。2. 句1、2、3中的that在從句中不作成分,只起連接作用。 Step2: Review the basic components of predicative clauses1.Definition

  • 新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Learning about Language教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Learning about Language教學(xué)設(shè)計(jì)

    Step 7: complete the discourse according to the grammar rules.Cholera used to be one of the most 1.__________ (fear) diseases in the world. In the early 19th century, _2_________ an outbreak of cholera hit Europe, millions of people died. But neither its cause, 3__________ its cure was understood. A British doctor, John Snow, wanted to solve the problem and he knew that cholera would not be controlled _4_________ its cause was found. In general, there were two contradictory theories 5 __________ explained how cholera spread. The first suggested that bad air caused the disease. The second was that cholera was caused by an _6_________(infect) from germs in food or water. John Snow thought that the second theory was correct but he needed proof. So when another outbreak of cholera hit London in 1854, he began to investigate. Later, with all the evidence he _7_________ (gather), John Snow was able to announce that the pump water carried cholera germs. Therefore, he had the handle of the pump _8_________ (remove) so that it couldn't be used. Through his intervention,the disease was stopped in its tracks. What is more, John Snow found that some companies sold water from the River Thames that __9__________________ (pollute) by raw waste. The people who drank this water were much more likely _10_________ (get) cholera than those who drank pure or boiled water. Through John Snow's efforts, the _11_________ (threaten) of cholera around the world saw a substantial increase. Keys: 1.feared 2.when 3. nor 4.unless 5.that/which 6.infection 7.had gathered 8.removed 9.was polluted 10.to get 11. threat

  • 新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Reading and thinking教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Reading and thinking教學(xué)設(shè)計(jì)

    Step 5: After learning the text, discuss with your peers about the following questions:1.John Snow believed Idea 2 was right. How did he finally prove it?2. Do you think John Snow would have solved this problem without the map?3. Cholera is a 19th century disease. What disease do you think is similar to cholera today?SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.keys:1. John Snow finally proved his idea because he found an outbreak that was clearly related to cholera, collected information and was able to tie cases outside the area to the polluted water.2. No. The map helped John Snow organize his ideas. He was able to identify those households that had had many deaths and check their water-drinking habits. He identified those houses that had had no deaths and surveyed their drinking habits. The evidence clearly pointed to the polluted water being the cause.3. SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.Step 6: Consolidate what you have learned by filling in the blanks:John Snow was a well-known _1___ in London in the _2__ century. He wanted to find the _3_____ of cholera in order to help people ___4_____ it. In 1854 when a cholera __5__ London, he began to gather information. He ___6__ on a map ___7___ all the dead people had lived and he found that many people who had ___8____ (drink) the dirty water from the __9____ died. So he decided that the polluted water ___10____ cholera. He suggested that the ___11__ of all water supplies should be _12______ and new methods of dealing with ____13___ water be found. Finally, “King Cholera” was __14_____.Keys: 1. doctor 2. 19th 3.cause 4.infected with 5.hit 6.marked 7.where 8.drunk 9.pump 10.carried 11.source 12.examined 13.polluted 14.defeatedHomework: Retell the text after class and preview its language points

上一頁(yè)123...5678910111213141516下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!

PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。